skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Design of a microfluidic device for the measurement of the elastic modulus of deformable particles
A microfluidic technique recently proposed in the literature to measure the interfacial tension between a liquid droplet and an immiscible suspending liquid [Hudson et al. , Appl. Phys. Lett. , 2005, 87 , 081905], [Cabral and Hudson, Lab Chip , 2006, 6 , 427] is suitably adapted to the characterization of the elastic modulus of soft particles in a continuous-flow process. A microfluidic device consisting of a cylindrical pipe with a reduction in cross-section is designed, and the deformation and velocity of incompressible elastic particles suspended in a Newtonian liquid are tracked as they move along the centerline through the constriction. Kinematic and shape information is exploited to calculate the particle's elastic modulus by means of the theory of elastic particle deformation in extensional flow. The approach is validated for different orders of magnitude of the elastic capillary number through experiments and numerical simulations.  more » « less
Award ID(s):
1661672
PAR ID:
10089457
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
15
Issue:
5
ISSN:
1744-683X
Page Range / eLocation ID:
880 to 889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work focuses on fabrication of multi-hollow polyimide gel and aerogel particles from a surfactant-free oil-in-oil emulsion system using a microfluidic droplet generator operating under dripping mode. The multi-hollow gel and aerogel particles have strong potential in thermal insulation. Under jetting and tip-streaming regime of microfluidic flows, droplets are generated with no occluded liquid phase. The present study investigates a means of designing polyimide gel particles with plurality of internal liquid droplets by strategically manipulating the flow rates of the continuous and dispersed phase liquids through the microfluidic droplet generator. The multi-hollow polyimide aerogel particles obtained after supercritical drying of the gel particles present mesopores, high BET surface area, and excellent prospect for thermal insulation. 
    more » « less
  2. Microfluidic manipulation of particles usually relies on their cross-stream migration. A center- or wall-directed motion has been reported for particles leading or lagging the Poiseuille flow of viscoelastic polyethylene oxide (PEO) solution via positive or negative electrophoresis. Such electro-elastic migration is exactly opposite to the electro-inertial migration of particles in a Newtonian fluid flow. We demonstrate here through the top- and side-view imaging that the leading and lagging particles in the electro-hydrodynamic flow of PEO solution migrate toward the centerline and corners of a rectangular microchannel, respectively. Each of these electro-elastic particle migrations is reduced in the PEO solution with shorter polymers though neither of them exhibits a strong dependence on the particle size. Both phenomena can be reasonably explained by the theory in terms of the ratios of the forces involved in the process. Decreasing the PEO concentration causes the particle migration to shift from the viscoelastic mode to the Newtonian mode, for which the magnitude of the imposed electric field is found to play an important role.

     
    more » « less
  3. Abstract

    Variable stiffness in elastomers can be achieved through the introduction of low melting point alloy particles, such as Field's metal (FM), enabling on‐demand switchable elasticity and anisotropy in response to thermal stimulus. Because the FM particles are thermally transitioned between solid and liquid phases, it is beneficial for the composite to be electrically conductive so the stiffness may be controlled via direct Joule heating. While FM is highly conductive, spherical particles contribute to a high percolation threshold. In this paper, it is shown that the percolation threshold of FM particulate composites can be reduced with increasing particles aspect ratio. Increasing the aspect ratio of phase‐changing fillers also increases the rigid‐to‐soft modulus ratio of the composite by raising the elastic modulus in the rigid state while preserving the low modulus in the soft state. The results indicate that lower quantities of high aspect ratio FM particles can be used to achieve both electrical conductivity and stiffness‐switching via a single solution and without introducing additional conductive fillers. This technique is applied to enable a highly stretchable, variable stiffness, and electrically conductive composite, which, when patterned around an inflatable actuator, allows for adaptable trajectories via selective softening of the surface materials.

     
    more » « less
  4. At the appropriate length scales, capillary forces exerted by a liquid in contact with a compliant solid can cause the solid's deformation. Capillary forces are also able to align particles with discrete wettabilities – or Janus particles – at liquid interfaces. Their amphiphilic properties enable Janus particles to orient themselves at liquid interfaces such that both of their surfaces are facing their preferred fluid. However, it is unclear how to spontaneously obtain varying degrees of rotational alignment. Here we extend ideas of elasto-capillarity to modulate rotational alignment by connecting amphiphilic Janus cylinders in an antisymmetric configuration. As the Janus cylinders rotate they cause a twisting deformation of rod. We develop both a mathematical model and a physical macroscale setup to relate the angle of twist to the elastic and interfacial properties, which can be used to tune the extent of alignment of Janus particles at air–water interfaces. We additionally extend our analysis to calculate the twist profile on a compliant element with a distributed capillary torque. 
    more » « less
  5. null (Ed.)
    Pure liquids in thermodynamic equilibrium are structurally homogeneous. In liquid crystals, flow and light pulses are used to create reconfigurable domains with polar order. Moreover, through careful engineering of concerted microfluidic flows and localized optothermal fields, it is possible to achieve complete control over the nucleation, growth, and shape of such domains. Experiments, theory, and simulations indicate that the resulting structures can be stabilized indefinitely, provided the liquids are maintained in a controlled nonequilibrium state. The resulting sculpted liquids could find applications in microfluidic devices for selective encapsulation of solutes and particles into optically active compartments that interact with external stimuli. 
    more » « less