Abstract Gravitational-wave observations provide the unique opportunity of studying black hole formation channels and histories—but only if we can identify their origin. One such formation mechanism is the dynamical synthesis of black hole binaries in dense stellar systems. Given the expected isotropic distribution of component spins of binary black holes in gas-free dynamical environments, the presence of antialigned or in-plane spins with respect to the orbital angular momentum is considered a tell-tale sign of a merger’s dynamical origin. Even in the scenario where birth spins of black holes are low, hierarchical mergers attain large component spins due to the orbital angular momentum of the prior merger. However, measuring such spin configurations is difficult. Here, we quantify the efficacy of the spin parameters encoding aligned-spin (χeff) and in-plane spin (χp) at classifying such hierarchical systems. Using Monte Carlo cluster simulations to generate a realistic distribution of hierarchical merger parameters from globular clusters, we can infer mergers’χeffandχp. The cluster populations are simulated using Advanced LIGO-Virgo sensitivity during the detector network’s third observing period and projections for design sensitivity. Using a “likelihood-ratio”-based statistic, we find that ∼2% of the recovered population by the current gravitational-wave detector network has a statistically significantχpmeasurement, whereas noχeffmeasurement was capable of confidently determining a system to be antialigned with the orbital angular momentum at current detector sensitivities. These results indicate that measuring spin-precession throughχpis a more detectable signature of hierarchical mergers and dynamical formation than antialigned spins.
more »
« less
Visualizing 2PN Binary Black Hole Spin Precession
In the post-Newtonian regime, the time it takes two black holes to orbit each other is much shorter than the time it takes their spins and the orbital angular momentum to precess about the direction of the total angular momentum, which in turn is shorter than the orbital decay time. We use the parameters quantifying the component black hole spins in and out of the orbital plane to build an interactive 3D visualization to explore the phenomenology of spin precession over these different time scales.
more »
« less
- Award ID(s):
- 1757303
- PAR ID:
- 10089824
- Date Published:
- Journal Name:
- LIGO Laboratory Summer 2018 Undergraduate Research
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Binary black holes with misaligned spins will generically induce both precession and nutation of the orbital angular momentum 𝐋 about the total angular momentum 𝐉. These phenomena modulate the phase and amplitude of the gravitational waves emitted as the binary inspirals to merger. We introduce a “taxonomy” of binary black-hole spin precession that encompasses all the known phenomenology, then present five new phenomenological parameters that describe generic precession and constitute potential building blocks for future gravitational waveform models. These are the precession amplitude ⟨𝜃𝐿⟩, the precession frequency ⟨Ω𝐿⟩, the nutation amplitude Δ𝜃𝐿, the nutation frequency 𝜔, and the precession-frequency variation ΔΩ𝐿. We investigate the evolution of these five parameters during the inspiral and explore their statistical properties for sources with isotropic spins. In particular, we find that nutation of 𝐋 is most prominent for binaries with high spins (𝜒≳0.5) and moderate mass ratios (𝑞∼0.6).more » « less
-
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50 M ⊙ . We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin- up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).more » « less
-
The most general bound binary black hole system has an eccentric orbit and precessing spins. The detection of such a system with significant eccentricity close to the merger would be a clear signature of dynamical formation. In order to study such systems, it is important to be able to evolve their spins and eccentricity from the larger separations at which the binary formed to the smaller separations at which it is detected, or vice versa. Knowledge of the precessional evolution of the binary’s orbital angular momentum can also be used to twist up aligned-spin eccentric waveform models to create a spin-precessing eccentric waveform model. In this paper, we present a new publicly available code to evolve eccentric, precessing binary black holes using orbit-averaged post-Newtonian (PN) equations from the literature. The spin-precession dynamics is 2PN accurate, i.e., with the leading spin-orbit and spin-spin corrections. The evolution of orbital parameters (orbital frequency, eccentricity, and periastron precession), which follow the quasi-Keplerian parametrization, is 3PN accurate in the point particle terms and includes the leading order spin-orbit and spin-spin effects. All the spin-spin terms include the quadrupole-monopole interaction. The eccentricity enhancement functions in the fluxes use the high-accuracy hyperasymptotic expansions from Loutrel and Yunes []. We discuss various features of the code and study the evolution of the orbital and spin-precession parameters of eccentric, precessing binary black holes. In particular, we study the dependence of the spin morphologies on eccentricity, where we find that the transition point from one spin morphology to another can depend nonmonotonically on eccentricity, and the fraction of binaries in a given morphology at a given point in the evolution of a population depends on the instantaneous eccentricity.more » « less
-
Light contains both spin and orbital angular momentum. Despite contributing equally to the total photonic angular momentum, these components derive from quite different parts of the electromagnetic field profile, namely its polarization and spatial variation, respectively, and therefore do not always share equal influence in light–matter interactions. With the growing interest in utilizing light’s orbital angular momentum to practice added control in the study of atomic systems, it becomes increasingly important for students and researchers to understand the subtlety involved in these interactions. In this article, we present a review of the fundamental concepts and recent experiments related to the interaction of beams containing orbital angular momentum with atoms. An emphasis is placed on understanding light’s angular momentum from the perspective of both classical waves and individual photons. We then review the application of these beams in recent experiments, namely single- and few-photon transitions, strong-field ionization, and high-harmonic generation, highlighting the role of light’s orbital angular momentum and the atom’s location within the beam profile within each case.more » « less
An official website of the United States government

