skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and Simulation of the Bifacial III-V-Nanowire-on-Si Solar Cell
ABSTRACT Rigorous coupled wave analysis (RCWA) simulation was used to model the absorption in periodic arrays of GaAs(0.73)P(0.27) nanowires (NWs) on Si substrates dependent upon the diameter (D), length (L), and spacing (center-to-center distance, or pitch, P) of the NWs. Based on this study, two resonant arrangements for a top NW array sub-cell having the highest limiting short-circuit current densities (J_sc) were found to be close to D = 150 nm, P = 250 nm and D = 300 nm, P = 500 nm, both featuring the same packing density of 0.28. Even though a configuration with thinner NWs exhibited the highest J_sc = 19.46 mA/cm^2, the array with D = 350 nm and P = 500 nm provided current matching with the underlying Si sub-cell with J_sc = 18.59 mA/cm^2. Addition of a rear-side In(0.81)Ga(0.19)As nanowire array with D = 800 nm and P = 1000 nm was found to be suitable for current matching with the front NW sub-cell and middle Si. However, with thinner and sparser In(0.81)Ga(0.19)As NWs with D = 700 nm and P = 1000 nm, the J_scof the bottom sub-cell was increased from 17.35 mA/cm^2 to 18.76 mA/cm^2 using a planar metallic back surface reflector, thus achieving a current matching with the top and middle cells.  more » « less
Award ID(s):
1665086
PAR ID:
10092177
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MRS Advances
ISSN:
2059-8521
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate unique reflective properties of light from bare and gold-coated InP nanowire (NW) photonic crystal arrays. The undoped wurtzite InP nanowire arrays are grown by selective area epitaxy and coated with a 12-nm thick Al2O3film to suppress atmospheric oxidation. A nominally 10-nm thick gold film is deposited around the NWs to investigate plasmonic effects. The reflectance spectra show pronounced Fabry-Perot oscillations, which are shifted for p- and s-polarized light due to a strong intrinsic birefringence in the NW arrays. Gold-coating of the NW array leads to a significant increase of the reflectance by a factor of two to three compared to the uncoated array, which is partially attributed to a plasmon resonance of the gold caps on top of the NWs and to a plasmonic antenna effect for p-polarized light. These interpretations are supported by finite-difference-time-domain simulations. Our experiments and simulations indicate that NW arrays can be used to design micrometer-sized polarizers, analyzers, and mirrors which are important optical elements in optoelectronic integrated circuits. 
    more » « less
  2. We report on the site-selective growth of >90% vertical GaAs nanowires (NWs) on Si (111) using self-assisted molecular beam epitaxy. The influences of growth parameters (pre-growth Ga opening time, V/III flux ratio) and processing conditions (reactive ion etching (RIE) and HF etching time) are investigated for different pitch lengths (200-1000 nm) to achieve vertical NWs. The processing variables determine the removal of the native oxide layer and the contact angle of Ga-droplet inside the patterned hole that are critical to the vertical orientation of the NWs. Pre-growth Ga-opening time is found to be a crucial factor determining the size of the droplet in the patterned hole, while the V/III beam equivalent pressure (BEP) ratio influenced the occupancy of the holes due to the axial growth of NWs being group-V limited. 
    more » « less
  3. Theβ-Ga2O3nanomembrane (NM)/diamond heterostructure is one of the promising ultra-wide bandgap heterostructures that offers numerous complementary advantages from both materials. In this work, we have investigated the thermal properties of theβ-Ga2O3NM/diamond heterostructure with three different thicknesses ofβ-Ga2O3nanomembranes (NMs), namely 100 nm, 1000 nm, and 4000 nm thickβ-Ga2O3NMs using Raman thermometry. The thermal property—temperature relationships of theseβ-Ga2O3NM/diamond heterostructures, such as thermal conductivity and interfacial thermal boundary conductance were determined under different temperature conditions (from 100 K to 500 K with a 40 K interval). The result provides benchmark knowledge about the thermal conductivity ofβ-Ga2O3NMs over a wide temperature range for the design of novelβ-Ga2O3-based power electronics and optoelectronics. 
    more » « less
  4. Abstract This study presents the first report on patterned nanowires (NWs) of dilute nitride GaAsSbN on p-Si (111) substrates by self-catalyzed plasma-assisted molecular beam epitaxy. Patterned NW array with GaAsSbN of Sb composition of 3% as a stem provided the best yield of vertical NWs. Large bandgap tuning of ~ 75 meV, as ascertained from 4 K photoluminescence (PL), over a pitch length variation of 200–1200 nm has been demonstrated. Pitch-dependent axial and radial growth rates show a logistic sigmoidal growth trend different from those commonly observed in other patterned non-nitride III–V NWs. The sigmoidal fitting provides further insight into the PL spectral shift arising from differences in Sb and N incorporation from pitch induced variation in secondary fluxes. Results indicate that sigmoidal fitting can be a potent tool for designing patterned NW arrays of optimal pitch length for dilute nitrides and other highly mismatched alloys and heterostructures. 
    more » « less
  5. Abstract In this work, we demonstrate optically pumped lasing in highly Zn-doped GaAs nanowires (NWs) lying on an iron film. The conically shaped NWs are first covered with an 8 nm thick Al2O3film to prevent atmospheric oxidation and mitigate band-bending effects. Multimode and single-mode lasing have been observed for NWs with a length greater or smaller than 2μm, respectively. Finite difference time domain calculations reveal a weak electric field enhancement in the Al2O3layer at the NW/iron film interface for the lasing modes. The high Zn acceptor concentration in the NWs provides enhanced radiative efficiency and enables lasing on the iron film despite plasmonic losses. Our results open avenues for integrating NW lasers on ferromagnetic substrates to achieve new functionalities, such as magnetic field-induced modulation. 
    more » « less