skip to main content


Title: OpenStack Network Acceleration Scheme for Datacenter Intelligent Applications
Cloud virtualization and multi-tenant networking provide Infrastructure as a Service (IaaS) providers a new and innovative way to offer on-demand services to their customers, such as easy provisioning of new applications and better resource efficiency and scalability. However, existing data-intensive intelligent applications require more powerful processors, higher bandwidth and lower-latency networking service. In order to boost the performance of computing and networking services, as well as reduce the overhead of software virtualization, we propose a new data center network design based on OpenStack. Specifically, we map the OpenStack networking services to the hardware switch and utilize hardware-accelerated L2 switch and L3 routing to solve the software limitations, as well as achieve software-like scalability and flexibility. We design our prototype system via the Arista Software-Defined-Networking (SDN) switch and provide an automatic script which abstracts the service layer that decouples OpenStack from the physical network infrastructure, thereby providing vendor-independence. We have evaluated the performance improvement in terms of bandwidth, delay, and system resource utilization using various tools and under various Quality-of-Service (QoS) constraints. Our solution demonstrates improved cloud scaling and network efficiency via only one touch point to control all vendors' devices in the data center.  more » « less
Award ID(s):
1637371
NSF-PAR ID:
10092482
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 IEEE 11th International Conference on Cloud Computing (CLOUD)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cloud visualization and multi-tenant networking provide Infrastructure as a Service (IaaS) provider a new and innovative way to offer the on-demand services to their customers, such as the easy provisioning of new applications and the better resource efficiency and scalability. However, existing data-intensive applications require more powerful processor and computing power, as well as a high bandwidth, low latency and consistent networking service. In order to boost the performance of computing and networking services, as well as reduce the overhead of the software virtualization, we propose a new data center network design based on OpenStack, which is a promising cloud operating system solution. Specifically, we map the OpenStack networking services to the hardware switch, and perform hardware-accelerated L2 switch and L3 routing to solve the software limitations, as well as achieve the software-like scalability and flexibility. We designed our prototype system via the Arista Software-Defined-Networking (SDN) switch, and evaluated the performance improvement in terms of the bandwidth and delay using various tools. Our experimental results demonstrate that our datacenter networking solution achieves higher bandwidth, lower latency, and lower CPU utilization of the host server. 
    more » « less
  2. Network function virtualization (NFV) offers the potential for both enhancing service delivery flexibility and reducing overall costs by virtualizing network functions that are traditionally implemented in dedicated hardware. However, the flexibility of NFV comes with considerable compromises since virtual machine carried functions could introduce significant performance overhead. In this paper, we present a novel high-performance framework called HYPER, which combines programmable hardware infrastructure and traditional software infrastructure in NFV to achieve both high performance and flexibility for supporting virtualized network functions (VNFs). In HYPER, we design a mediator layer to hide underlying infrastructure heterogeneity from the NFV orchestrator to simplify VNF management. In addition, we design a SLA-aware service chaining algorithm in HYPER to leverage the benefits of the hybrid infrastructure to fulfill both functional and performance requirements from service subscribers (or tenants). To optimize resource utilization efficiency, we also introduce a performance-aware VNF placement algorithm in HYPER, which accommodates both resource and performance requirements in placing VNFs. We implement HYPER in a testbed based on OpenStack and ONetCard. Experimental results show that HYPER reduces the forwarding latency of a service chain by 40% to 67% compared with data plane development kit -based implementation, while maintaining the flexibility of VNF management. 
    more » « less
  3. The Internet of Things (IoT) requires distributed, large scale data collection via geographically distributed devices. While IoT devices typically send data to the cloud for processing, this is problematic for bandwidth constrained applications. Fog and edge computing (processing data near where it is gathered, and sending only results to the cloud) has become more popular, as it lowers network overhead and latency. Edge computing often uses devices with low computational capacity, therefore service frameworks and middleware are needed to efficiently compose services. While many frameworks use a top-down perspective, quality of service is an emergent property of the entire system and often requires a bottom up approach. We define services as multi-modal, allowing resource and performance tradeoffs. Different modes can be composed to meet an application's high level goal, which is modeled as a function. We examine a case study for counting vehicle traffic through intersections in Nashville. We apply object detection and tracking to video of the intersection, which must be performed at the edge due to privacy and bandwidth constraints. We explore the hardware and software architectures, and identify the various modes. This paper lays the foundation to formulate the online optimization problem presented by the system which makes tradeoffs between the quantity of services and their quality constrained by available resources. 
    more » « less
  4. Distributed denial of service (DDoS) attacks have been prevalent on the Internet for decades. Albeit various defenses, they keep growing in size, frequency, and duration. The new network paradigm, Software-defined networking (SDN), is also vulnerable to DDoS attacks. SDN uses logically centralized control, bringing the advantages in maintaining a global network view and simplifying programmability. When attacks happen, the control path between the switches and their associated controllers may become congested due to their limited capacity. However, the data plane visibility of SDN provides new opportunities to defend against DDoS attacks in the cloud computing environment. To this end, we conduct measurements to evaluate the throughput of the software control agents on some of the hardware switches when they are under attacks. Then, we design a new mechanism, calledScotch, to enable the network to scale up its capability and handle the DDoS attack traffic. In our design, the congestion works as an indicator to trigger the mitigation mechanism.Scotchelastically scales up the control plane capacity by using an Open vSwitch-based overlay.Scotchtakes advantage of both the high control plane capacity of a large number of vSwitches and the high data plane capacity of commodity physical switches to increase the SDN network scalability and resiliency under abnormal (e.g., DDoS attacks) traffic surges. We have implemented a prototype and experimentally evaluatedScotch. Our experiments in the small-scale lab environment and large-scale GENI testbed demonstrate thatScotchcan elastically scale up the control channel bandwidth upon attacks.

     
    more » « less
  5. With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying Internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype, we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, as opposed to IP-only, our hybrid setup achieves better average bitrate and better perceived visual quality (computed via VMAF metric) over live video streaming services. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE. 
    more » « less