skip to main content

Title: 15.7 An 8.3MHz GaN Power Converter Using Markov Continuous RSSM for 35dBμV Conducted EMI Attenuation and One-Cycle TON Rebalancing for 27.6dB VO Jittering Suppression
Award ID(s):
Publication Date:
Journal Name:
IEEE International Solid- State Circuits Conference (ISSCC)
Page Range or eLocation-ID:
250 to 252
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of active metadevices continues to present keystone challenges in fields of plasmonics and photonics. Here, we demonstrate an analogue of electromagnetically induced transparency (EIT) effect in a far-infrared metasurface device via near-field coupling of bright and quasi-dark resonances resonating at nearly the same frequency with contrasting line widths. The proposed metasurface was further optimized numerically in order to demonstrate a reconfiguration effect (frequency-shift of the spectral response). The tunability property of the device is achieved by incorporating a thin layer of Ge 2 Sb 2 Te 5 (GST), a temperature-driven phase change material (PCM). Theoretical analysis based on a coupled Lorentz oscillator model explains the physical mechanism in the proposed design and shows a good agreement with the observed results. Such active hybrid EIT metadevices could have applications in tunable slow-light effects, delay bandwidth management and ultrafast laser induced switching.
  2. Ti0.5Mg0.5N has recently been predicted to be a semiconductor with a 1.3 eV band gap and promising properties for thermoelectric and plasmonic devices. As a first step towards experimental validation, epitaxial Ti0.5Mg0.5N(001) layers are deposited on MgO(001) by reactive magnetron co-sputtering from titanium and magnesium targets at 600 °C in pure N2 atmospheres. X-ray diffraction ω-2θ scans, ω-rocking curves, φ-scans, and high resolution reciprocal space maps show that Ti0.5Mg0.5N alloys form a pseudobinary rocksalt structure and are single crystals with a cube-on-cube epitaxial relationship with the substrate: (001)TiMgN║(001)MgO and [100]TiMgN║[100]MgO. A 275-nm-thick Ti0.5Mg0.5N layer is fully relaxed and exhibits a 002 ω-rocking curve width ω = 0.73°, while a 36-nm-thick layer is fully strained and has a ω = 0.49°. These results indicate a thickness-dependent strain state which suggests a critical thickness for misfit dislocation nucleation and glide which is between 36 and 275 nm. A measured negative temperature coefficient of resistivity in combination with a low optical absorption coefficient of 0.25 × 105 cm 1 for λ = 740 nm, and a vanishing density of states at the Fermi level measured by x-ray photoelectron spectroscopy support the prediction that Ti0.5Mg0.5N is a semiconductor.