skip to main content


Title: Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass
We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z \in \{2.2, 2.6, 3.0\}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution is in agreement within $2\sigma$ with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $\Delta \bar{u}(x)>\Delta \bar{d}(x)$.  more » « less
Award ID(s):
1653405
NSF-PAR ID:
10093085
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical review letters
Volume:
121
Issue:
24
ISSN:
0031-9007
Page Range / eLocation ID:
242003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there have been rapid developments in lattice-QCD calculations of proton structure, especially in the parton distribution functions (PDFs). We overcame a longstanding obstacle and for the first time in lattice-QCD are able to directly calculate the Bjorken- x dependence of the quark, helicity and transversity distributions. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken- x dependence of finite-momentum PDFs, called “quasi-PDFs”, can be calculated on the lattice. The quasi-PDF nucleon matrix elements are renormalized non-perturbatively in RI/MOM-scheme. Following a nonperturbative renormalization of the parton quasi-distribution in a regularization-independent momentum-subtraction scheme, we establish its matching to the $ \overline {{\rm{MS}}} $ PDF and calculate the non-singlet matching coefficient at next-to-leading order in perturbation theory. In this proceeding, I will show the progress that has been made in recent years, highlighting the latest state-of-the art PDF calculations at the physical pion mass. Future impacts on the large- x global PDF fits are also discussed. 
    more » « less
  2. Abstract Scattering of high energy particles from nucleons probes their structure, as was done in the experiments that established the non-zero size of the proton using electron beams 1 . The use of charged leptons as scattering probes enables measuring the distribution of electric charges, which is encoded in the vector form factors of the nucleon 2 . Scattering weakly interacting neutrinos gives the opportunity to measure both vector and axial vector form factors of the nucleon, providing an additional, complementary probe of their structure. The nucleon transition axial form factor, F A , can be measured from neutrino scattering from free nucleons, ν μ n  →  μ − p and $${\bar{\nu }}_{\mu }p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n , as a function of the negative four-momentum transfer squared ( Q 2 ). Up to now, F A ( Q 2 ) has been extracted from the bound nucleons in neutrino–deuterium scattering 3–9 , which requires uncertain nuclear corrections 10 . Here we report the first high-statistics measurement, to our knowledge, of the $${\bar{\nu }}_{\mu }\,p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n cross-section from the hydrogen atom, using the plastic scintillator target of the MINERvA 11 experiment, extracting F A from free proton targets and measuring the nucleon axial charge radius, r A , to be 0.73 ± 0.17 fm. The antineutrino–hydrogen scattering presented here can access the axial form factor without the need for nuclear theory corrections, and enables direct comparisons with the increasingly precise lattice quantum chromodynamics computations 12–15 . Finally, the tools developed for this analysis and the result presented are substantial advancements in our capabilities to understand the nucleon structure in the weak sector, and also help the current and future neutrino oscillation experiments 16–20 to better constrain neutrino interaction models. 
    more » « less
  3. Abstract

    We present a state-of-the-art calculation of the unpolarized pion valence-quark distribution in the framework of large-momentum effective theory (LaMET) with improved handling of systematic errors as well as two-loop perturbative matching. We use lattice ensembles generated by the MILC collaboration at lattice spacinga≈ 0.09 fm, lattice volume 643× 96,Nf= 2 + 1 + 1 flavors of highly-improved staggered quarks and a physical pion mass. The LaMET matrix elements are calculated with pions boosted to momentumPz≈ 1.72 GeV with high-statistics ofO(106) measurements. We study the pion PDF in both hybrid-ratio and hybrid-regularization-independent momentum subtraction (hybrid-RI/MOM) schemes and also compare the systematic errors with and without the addition of leading-renormalon resummation (LRR) and renormalization-group resummation (RGR) in both the renormalization and lightcone matching. The final lightcone PDF results are presented in the modified minimal-subtraction scheme at renormalization scaleμ= 2.0 GeV. We show that thex-dependent PDFs are compatible between the hybrid-ratio and hybrid-RI/MOM renormalization with the same improvements. We also show that systematics are greatly reduced by the simultaneous inclusion of RGR and LRR and that these methods are necessary if improved precision is to be reached with higher-order terms in renormalization and matching.

     
    more » « less
  4. Abstract

    Measurements of the associated production of a W boson and a charm ($${\text {c}}$$c) quark in proton–proton collisions at a centre-of-mass energy of 8$$\,\text {TeV}$$TeVare reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7$$\,\text {fb}^{-1}$$fb-1collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction$$\sigma (\text {p}\text {p}\rightarrow \text {W}+ {\text {c}}+ \text {X}) {\mathcal {B}}(\text {W}\rightarrow \ell \upnu )$$σ(ppW+c+X)B(Wν), where$$\ell = \text {e}$$=eor$$\upmu $$μ, and the cross section ratio$$\sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{+} + \bar{{\text {c}}} + \text {X}}) / \sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{-} + {\text {c}}+ \text {X}})$$σ(ppW++c¯+X)/σ(ppW-+c+X)are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

     
    more » « less
  5. null (Ed.)
    During high-speed rear impacts with delta-V > 25 km/h, the front seats may rotate rearward due to occupant and seat momentum change leading to possibly large seat deflection. One possible way of limiting this may be by introducing a structure that would restrict large rotations or deformations, however, such a structure would change the front seat occupant kinematics and kinetics. The goal of this study was to understand the influence of seat back restriction on head, neck and torso responses of front seat occupants when subjected to a moderate speed rear-impact. This was done by simulating a rear impact scenario with a delta-V of 37.4 km/h using LS-Dyna, with the GHBMC M50 occupant model and a manufacturer provided seat model. The study included two parts, the first part was to identify worst case scenarios using the simplified GHBMC M50-OS, and the second part was to further investigate the identified scenarios using the detailed GHBMC M50-O. The baseline condition included running the belted GHBMC on the seat at the specified pulse. This was followed by including a seatback constraint, a restriction bar, at 65 mm from the seat back to restrict rearward movement. Four different scenarios were investigated using the GHBMC M50-OS for the first part of the study both in the baseline and inclusion of a restriction bar behind the seatback: occupant seated normally; occupant offset on the seat; occupant rotated on the seat; and occupant seated normally but at a slightly oblique rear impact direction. The oblique condition was identified as the worst-case scenario based on the inter-vertebral kinematics; therefore, this condition was further investigated in the simulations with GHBMC M50-O. In the oblique rear impact scenario, the head missed the head restraint leading to inter-vertebral rotations exceeding the physiological range of motions regardless of the restriction bar use. However, adding a restriction bar behind the seat back showed a higher HIC and BrIC in both normal and oblique pulses due to the sudden stop, although the magnitudes were below the threshold. 
    more » « less