skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploration of copper-free ZnTe buffer layers for CdTe-based solar cells
Development of copper-free ZnTe buffer layers for CdTe-based solar cells is an important avenue for improving stability. Group V elements offer a path towards that goal. This work explores two group V elements, phosphorous and antimony, as candidates for making copper-free p-type ZnTe buffer layer using thermal evaporation. It is found that incorporation of both elements into ZnTe film can easily be done. In addition, as deposited ZnTe films are Te-rich and Cd1-xZnxTe alloys form upon co-evaporation of ZnTe and Cd3P2 , improving crystallinity and stoichiometry of the film. Activation of P poses a challenge, while ZnTe films with Sb produced good sheet resistance values.  more » « less
Award ID(s):
1706149
PAR ID:
10093640
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
Page Range / eLocation ID:
3040 to 3043
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CdTe photovoltaic devices with a ZnTe back contact have the potential to improve device performance and stability. After performing a sweep of ZnTe deposition and annealing temperatures, device performances were evaluated. Copper doping was performed after the ZnTe depositions by sublimating CuCl. Initial results indicate that ZnTe deposited and annealed for 20 minutes at 250°C improved device performance in terms of fill factor, J SC , and V OC as compared to other deposition temperatures. Copper doping also impacted device performance and a longer copper treatment on ZnTe led to a 17.6% device. 
    more » « less
  2. In this work, we report the different effects of CdCl 2 treatment on CdTe films deposited by thermal evaporation onto CdS and MgZnO (MZO) buffer layers. The main finding, which is relevant for understanding recent advances in CdTe device efficiency, is that few-μm thick CdTe films deposited on MZO can be induced to completely recrystallize forming a film consisting of grains that span the film thickness and are up to 30 μm laterally. On CdS buffer layers, the changes in microstructure with Cl treatment are much less pronounced and the final microstructure is less ideal for thin film photovoltaics. We propose a thermodynamic framework for understanding the microstructural changes during CdCl 2 treatment which can assist in understanding the wide range of behaviors observed across the many CdTe thin film solar cell fabrication procedures. 
    more » « less
  3. The enargite phase of Cu3AsS4 (ENG) is an emerging photovoltaic material with a ∼1.4 eV bandgap and is composed of earth abundant elements with favorable defect properties arising from the differing ionic radii of the constituent elements. Unfortunately, ENG-based photovoltaic devices have experimentally been shown to have low power conversion efficiencies, possibly due to defects in the material. In this joint computational and experimental study, we explore the defect properties of ENG and employ synthesis approaches, such as silver alloying, to reduce the density of harmful defects. We show that shallow copper vacancies (VCu) are expected to be the primary defects in ENG and contribute to its p-type character. However, as shown through photoluminescence (PL) measurements of synthesized ENG, a large mid-bandgap PL peak is present at ∼0.87 eV from a band edge, potentially caused by a copper- or sulfur-related defect. To improve the properties of ENG films and mitigate the mid-bandgap PL, we employed an amine-thiol molecular precursor-based synthesis approach and utilized silver alloying of ENG films. While silver alloying did not affect the mid-bandgap PL peak, it increased grain size and lowered film porosity, improving device performance. In conclusion, we found that incorporating silver such that [Ag]/([Ag] + [Cu]) is 0.05 in the film using an amine-thiol based molecular precursor route with As2S3 as the arsenic source resulted in improved photovoltaic device performance with a champion device of efficiency 0.60%, the highest reported efficiency for an Cu3AsS4 (ENG)-based device to date. 
    more » « less
  4. Copper oxide nanostructures are widely used for various applications due to their unique optical and electrical properties. In this work, we demonstrate an atmospheric laser-induced oxidation technique for the fabrication of highly electrochemically active copper oxide hierarchical micro/nano structures on copper surfaces to achieve highly sensitive non-enzymatic glucose sensing performance. The effect of laser processing power on the composition, crystallinity, microstructure, wettability, and color of the laser-induced oxide on copper (LIO-Cu) surface was systematically studied using scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GI-XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), EDX-mapping, water contact angle measurements, and optical microscopy. Results of these investigations showed a remarkable increase in copper oxide composition by increasing the laser processing power. The pore size distribution and surface area of the pristine and LIO-Cu sample estimated by N 2 adsorption–desorption data showed a developed mesoporous LIO-Cu structure. The size of the generated nano-oxides, crystallinity, and electroactivity of the LIO-Cu were observed to be adjustable by the laser processing power. The electrocatalytic activity of LIO-Cu surfaces was studied by means of cyclic voltammetry (CV) within a potential window of −0.8 to +0.8 V and chronoamperometry in an applied optimized potential of +0.6 V, in 0.1 M NaOH solution and phosphate buffer solution (PBS), respectively. LIO-Cu surfaces with optimized laser processing powers exhibited a sensitivity of 6950 μA mM −1 cm −2 within a wide linear range from 0.01 to 5 mM, with exceptional specificity and response time (<3 seconds). The sensors also showed excellent response stability over a course of 50 days that was originated from the binder-free robust electroactive film fabricated directly onto the copper surface. The demonstrated one-step LIO processing onto commercial metal films, can potentially be applied for tuneable and scalable roll-to-roll fabrication of a wide range of high surface area metal oxide micro/nano structures for non-enzymatic biosensing and electrochemical applications. 
    more » « less
  5. Copper sulphide (CuxS, x=1 to 2) is a metal chalcogenide semiconductor that exhibits useful optical and electrical properties due to the presence of copper vacancies. This makes CuxS thin films useful for a number of applications including infrared absorbing coatings, solar cells, thin-film electronics, and as a precursor for CZTS (Copper Zinc Tin Sulphide) thin films. Post-deposition sintering of CuxS nanoparticle films is a key process that affects the film properties and hence determines its operational characteristics in the above applications. Intense pulse light (IPL) sintering uses visible broad-spectrum xenon light to rapidly sinter nanoparticle films over large-areas, and is compatible with methods such as roll-to-roll deposition for large-area deposition of colloidal nanoparticle films and patterns. This paper experimentally examines the effect of IPL parameters on sintering of CuxS thin films. As-deposited and sintered films are compared in terms of their crystal structure, as well as optical and electrical properties, as a function of the IPL parameters. 
    more » « less