skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: Charge-State Field Evaporation Behavior in Cu(V) Nanocrystalline Alloys
Abstract Atom probe tomography (APT) of a nanocrystalline Cu–7 at.% V thin film annealed at 400°C for 1 h revealed chemical partitioning in the form of solute segregation. The vanadium precipitated along high angle grain boundaries and at triple junctions, determined by cross-correlative precession electron diffraction of the APT specimen. Upon field evaporation, the V 2+ /(V 1+ + VH 1+ ) ratio from the decomposed ions was ~3 within the matrix grains and ~16 within the vanadium precipitates. It was found that the VH 1+ complex was prevalent in the matrix, with its presence explained in terms of hydrogen's ability to assist in field evaporation. The change in the V 2+ /(V 1+ + VH 1+ ) charge-state ratio (CSR) was studied as a function of base temperature (25–90 K), laser pulse energy (50–200 pJ), and grain orientation. The strongest influence on changing the CSR was with the varied pulse laser, which made the CSR between the precipitates and the matrix equivalent at the higher laser pulse energies. However, at these conditions, the precipitates began to coarsen. The collective results of the CSRs are discussed in terms of field strengths related to the chemical coordination.  more » « less
Award ID(s):
1709803
NSF-PAR ID:
10097801
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Microscopy and Microanalysis
Volume:
25
Issue:
02
ISSN:
1431-9276
Page Range / eLocation ID:
501 to 510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Laser-assisted atom probe tomography (APT) is a relatively new, powerful technique for sub-nanometric mineral and biomineral analysis. However, the laser-assisted APT analysis of highly anisotropic and chemically diverse minerals, such as phyllosilicates, may prove especially challenging due to the complex interaction between the crystal structure and the laser pulse upon applying a high electric field. Micas are a representative group of nonswelling clay minerals of relevance to a number of scientific and technological fields. In this study, a Mg-rich biotite was analyzed by APT to generate preliminary data on nonisotropic minerals and to investigate the effect of the crystallographic orientation on mica chemical composition and structure estimation. The difference in results obtained for specimens extracted from the (001) and (hk0) mica surfaces indicate the importance of both experimental parameters and the crystallography. Anisotropy of mica has a strong influence on the physicochemical properties of the mineral during field evaporation and the interpretation of APT data. The promising results obtained in the present study open the way to future innovative APT applications on mica and clay minerals and contribute to the general discussion on the challenges for the analysis of geomaterials by atom probe tomography.

     
    more » « less
  2. null (Ed.)
    By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V + ) beam source with a double quadrupole-double octopole (DQDO) ion–molecule reaction apparatus, we have investigated detailed absolute integral cross sections ( σ 's) for the reactions, V + [a 5 D J ( J = 0, 2), a 5 F J ( J = 1, 2), and a 3 F J ( J = 2, 3)] + CH 4 , covering the center-of-mass collision energy range of E cm = 0.1–10.0 eV. Three product channels, VH + + CH 3 , VCH 2 + + H 2 , and VCH 3 + + H, are unambiguously identified based on E cm -threshold measurements. No J -dependences for the σ curves ( σ versus E cm plots) of individual electronic states are discernible, which may indicate that the spin–orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a 3 F J state [ σ (a 3 F J )] are found to be more than ten times larger than those for the quintet σ (a 5 D J ) and σ (a 5 F J ) states, showing that a reaction mechanism favoring the conservation of total electron spin. Without performing a detailed theoretical study, we have tentatively interpreted that a weak quintet-to-triplet spin crossing is operative for the activation reaction. The σ (a 5 D 0 , a 5 F 1 , and a 3 F 2) measurements for the VH + , VCH 2 + , and VCH 3 + product ion channels along with accounting of the kinetic energy distribution due to the thermal broadening effect for CH 4 have allowed the determination of the 0 K bond dissociation energies: D 0 (V + –H) = 2.02 (0.05) eV, D 0 (V + –CH 2 ) = 3.40 (0.07) eV, and D 0 (V + –CH 3 ) = 2.07 (0.09) eV. Detailed branching ratios of product ion channels for the titled reaction have also been reported. Excellent simulations of the σ curves obtained previously for V + generated by surface ionization at 1800–2200 K can be achieved by the linear combination of the σ (a 5 D J , a 5 F J , and a 3 F J ) curves weighted by the corresponding Boltzmann populations of the electronic states. In addition to serving as a strong validation of the thermal equilibrium assumption for the populations of the V + electronic states in the hot filament ionization source, the agreement between these results also confirmed that the V + (a 5 D J , a 5 F J , and a 3 F J ) states prepared in this experiment are in single spin–orbit states with 100% purity. 
    more » « less
  3. The D 5 Π–X 5 Δ (0,0) band of vanadium hydride at 654 nm has been recorded by laser excitation spectroscopy and represents the first analyzed spectrum of VH in the gas phase. The molecules were generated using a hollow cathode discharge source, with laser-induced fluorescence detected via the D 5 Π–A 5 Π (0,0) transition. All five main (ΔΩ = ΔΛ) subbands were observed as well as several satellite ones, which together create a rather complex and overlapped spectrum covering the region 15 180–15 500 cm −1 . The D 5 Π state displays the effects of three strong local perturbations, which are likely caused by interactions with high vibrational levels of the B 5 Σ − and c 3 Σ − states, identified in a previous multiconfigurational self-consistent field study by Koseki et al. [J. Phys. Chem. A 108, 4707 (2004)]. Molecular constants describing the X 5 Δ, A 5 Π, and D 5 Π states were determined in three separate least-squares fits using effective Hamiltonians written in a Hund’s case (a) basis. The fine structure of the ground state is found to be consistent with its assignment as a σπ 2 δ, 5 Δ electronic state. The fitted values of its first-order spin–orbit and rotational constants in the ground state are [Formula: see text] and B = 5.7579(13) cm −1 , the latter of which yields a bond length of [Formula: see text] Å. This experimental value is in good agreement with previous computational studies of the molecule and fits well within the overall trend of decreasing bond length across the series of 3d transition metal monohydrides. 
    more » « less
  4. By combining a newly developed two-color laser pulsed field ionization-photoion (PFI-PI) source and a double-quadrupole–double-octopole (DQDO) mass spectrometer, we investigated the integral cross sections ( σ s) of the vanadium cation (V + ) toward the activation of CO 2 in the center-of-mass kinetic energy ( E cm ) range from 0.1 to 10.0 eV. Here, V + was prepared in single spin–orbit levels of its lowest electronic states, a 5 D J ( J = 0–4), a 5 F J ( J = 1–5), and a 3 F J ( J = 2–4), with well-defined kinetic energies. For both product channels VO + + CO and VCO + + O identified, V + (a 3 F 2,3 ) is found to be greatly more reactive than V + (a 5 D 0,2 ) and V + (a 5 F 1,2 ), suggesting that the V + + CO 2 reaction system mainly proceeds via a “weak quintet-to-triplet spin-crossing” mechanism favoring the conservation of total electron spins. In addition, no J -state dependence was observed. The distinctive structures of the quantum electronic state selected integral cross sections observed as a function of E cm and the electronic state of the V + ion indicate that the difference in the chemical reactivity of the title reaction originated from the quantum-state instead of energy effects. Furthermore, this work suggests that the selection of the quantum electronic states a 3 F J ( J = 2–4) of the transition metal V + ion can greatly enhance the efficiency of CO 2 activation. 
    more » « less
  5. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less