skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PMGAN: Paralleled Mix-Generator Generative Adversarial Networks with Balance Control
A Generative Adversarial Network (GAN) is an unsupervised generative framework to generate a sample distribution that is identical to the data distribution. Recently, mix strategy multi-generator/discriminator GANs have been shown to outperform single pair GANs. However, the mixed model suffers from the problem of linearly growing training time. Also, imbalanced training among generators makes it difficult to parallelize. In this paper, we propose a balanced mix-generator GAN that works in parallel by mixing multiple disjoint generators to approximate the real distribution. The weights of the discriminator and the classifier are controlled by a balance strategy. We also present an efficient loss function, to force each generator to embrace few modes with a high probability. Our model is naturally adaptive to large parallel computation frameworks. Each generator can be trained on multiple GPUs asynchronously. We have performed extensive experiments on synthetic datasets, MNIST1000, CIFAR-10, and ImageNet. The results establish that our model can achieve the state-of-the-art performance (in terms of the modes coverage and the inception score), with significantly reduced training time. We also show that the missing mode problem can be relieved with a growing number of generators.  more » « less
Award ID(s):
1743418
PAR ID:
10098431
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The 27th International Conference on Artificial Neural Networks
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples. 
    more » « less
  2. We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by accompanying multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN. 
    more » « less
  3. We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by corresponding multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN. 
    more » « less
  4. Generative adversarial networks (GANs) are a class of machine-learning models that use adversarial training to generate new samples with the same (potentially very complex) statistics as the training samples. One major form of training failure, known as mode collapse, involves the generator failing to reproduce the full diversity of modes in the target probability distribution. Here, we present an effective model of GAN training, which captures the learning dynamics by replacing the generator neural network with a collection of particles in the output space; particles are coupled by a universal kernel valid for certain wide neural networks and high-dimensional inputs. The generality of our simplified model allows us to study the conditions under which mode collapse occurs. Indeed, experiments which vary the effective kernel of the generator reveal a mode collapse transition, the shape of which can be related to the type of discriminator through the frequency principle. Further, we find that gradient regularizers of intermediate strengths can optimally yield convergence through critical damping of the generator dynamics. Our effective GAN model thus provides an interpretable physical framework for understanding and improving adversarial training. 
    more » « less
  5. null (Ed.)
    Generative Adversarial Networks (GANs) have shown impressive results for image generation. However, GANs face challenges in generating contents with certain types of constraints, such as game levels. Specifically, it is difficult to generate levels that have aesthetic appeal and are playable at the same time. Additionally, because training data usually is limited, it is challenging to generate unique levels with current GANs. In this paper, we propose a new GAN architecture named Conditional Embedding Self-Attention Generative Adversarial Net- work (CESAGAN) and a new bootstrapping training procedure. The CESAGAN is a modification of the self-attention GAN that incorporates an embedding feature vector input to condition the training of the discriminator and generator. This allows the network to model non-local dependency between game objects, and to count objects. Additionally, to reduce the number of levels necessary to train the GAN, we propose a bootstrapping mechanism in which playable generated levels are added to the training set. The results demonstrate that the new approach does not only generate a larger number of levels that are playable but also generates fewer duplicate levels compared to a standard GAN. 
    more » « less