skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AURORA: Auditing PageRank on Large Graphs
Ranking on large-scale graphs plays a fundamental role in many high-impact application domains, ranging from information retrieval, recommender systems, sports team management, biology to neuroscience and many more. PageRank, together with many of its random walk based variants, has become one of the most well-known and widely used algorithms, due to its mathematical elegance and the superior performance across a variety of application domains. Important as it might be, state-of-the-art lacks an intuitive way to explain the ranking results by PageRank (or its variants), e.g., why it thinks the returned top-k webpages are the most important ones in the entire graph; why it gives a higher rank to actor John than actor Smith in terms of their relevance w.r.t. a particular movie? In order to answer these questions, this paper proposes a paradigm shift for PageRank, from identifying which nodes are most important to understanding why the ranking algorithm gives a particular ranking result. We formally define the PageRank auditing problem, whose central idea is to identify a set of key graph elements (e.g., edges, nodes, subgraphs) with the highest influence on the ranking results. We formulate it as an opti-mization problem and propose a family of effective and scalable algorithms (Aurora) to solve it. Our algorithms measure the influence of graph elements and incrementally select influential elements w.r.t. their gradients over the ranking results. We perform extensive empirical evaluations on real-world datasets, which demonstrate that the proposed methods (Aurora) provide intuitive explanations with a linear scalability.  more » « less
Award ID(s):
1651203 1947135
PAR ID:
10099227
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
713 to 722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we present a web-based prototype for an explainable ranking algorithm in multi-layered networks, incorporating both network topology and knowledge information. While traditional ranking algorithms such as PageRank and HITS are important tools for exploring the underlying structure of networks, they have two fundamental limitations in their efforts to generate high accuracy rankings. First, they are primarily focused on network topology, leaving out additional sources of information (e.g. attributes, knowledge). Secondly, most algorithms do not provide explanations to the end-users on why the algorithm gives the specific ranking results, hindering the usability of the ranking information. We developed Xrank, an explainable ranking tool, to address these drawbacks. Empirical results indicate that our explainable ranking method not only improves ranking accuracy, but facilitates user understanding of the ranking by exploring the top influential elements in multi-layered networks. The web-based prototype (Xrank: http://www.x-rank.net) is currently online - we believe it will assist both researchers and practitioners looking to explore and exploit multi-layered network data. 
    more » « less
  2. null (Ed.)
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower bounds for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds. 
    more » « less
  3. null (Ed.)
    Semi-supervised and unsupervised machine learning methods often rely on graphs to model data, prompting research on how theoretical properties of operators on graphs are leveraged in learning problems. While most of the existing literature focuses on undirected graphs, directed graphs are very important in practice, giving models for physical, biological or transportation networks, among many other applications. In this paper, we propose a new framework for rigorously studying continuum limits of learning algorithms on directed graphs. We use the new framework to study the PageRank algorithm and show how it can be interpreted as a numerical scheme on a directed graph involving a type of normalised graph Laplacian . We show that the corresponding continuum limit problem, which is taken as the number of webpages grows to infinity, is a second-order, possibly degenerate, elliptic equation that contains reaction, diffusion and advection terms. We prove that the numerical scheme is consistent and stable and compute explicit rates of convergence of the discrete solution to the solution of the continuum limit partial differential equation. We give applications to proving stability and asymptotic regularity of the PageRank vector. Finally, we illustrate our results with numerical experiments and explore an application to data depth. 
    more » « less
  4. Graph neural networks are powerful graph representation learners in which node representations are highly influenced by features of neighboring nodes. Prior work on individual fairness in graphs has focused only on node features rather than structural issues. However, from the perspective of fairness in high-stakes applications, structural fairness is also important, and the learned representations may be systematically and undesirably biased against unprivileged individuals due to a lack of structural awareness in the learning process. In this work, we propose a pre-processing bias mitigation approach for individual fairness that gives importance to local and global structural features. We mitigate the local structure discrepancy of the graph embedding via a locally fair PageRank method. We address the global structure disproportion between pairs of nodes by introducing truncated singular value decomposition-based pairwise node similarities. Empirically, the proposed pre-processed fair structural features have superior performance in individual fairness metrics compared to the state-of-the-art methods while maintaining prediction performance. 
    more » « less
  5. null (Ed.)
    The PageRank of a graph is a scalar function defined on the node set of the graph which encodes nodes centrality information of the graph. In this article we use the PageRank function along with persistent homology to obtain a scalable graph descriptor and utilize it to compare the similarities between graphs. For a given graph G(V, E), our descriptor can be computed in O(|E|α(|V|)), where a is the inverse Ackermann function which makes it scalable and computable on massive graphs. We show the effectiveness of our method by utilizing it on multiple shape mesh datasets. 
    more » « less