Hempel de Ibarra, N; Mustard, J.
(Ed.)
Insects exhibit remarkable sensory , motor capabilities to successfully navigate their environment. As insects move, they activate sensory afferents. Hence, insects are inextricably part of their sensory ecology. Insects must correctly attribute self -versus external sources of sensory activation to make adaptive behavioral choices. This is achieved via corollary discharge circuits (CDCs), motor-to-sensory neuronal pathways providing predictive motor signals to sensory networks to coordinate sensory processing within the context of ongoing behavior. While CDCs provide predictive motor signals, their underlying mechanisms of action and functional consequences are diverse. Here, we describe inferred CDCs and identified corollary discharge interneurons (CDIs) in insects, highlighting their anatomical commonalities and our limited understanding of their synaptic integration into the nervous system. By using connectomics information, we demonstrate that the complexity with which identified CDIs integrate into the central nervous system (CNS) can be revealed.
more »
« less
An official website of the United States government

