skip to main content


Title: Rethinking restoration targets for American chestnut using species distribution modeling
Given the scale and speed of contemporary environmental changes, intensive conservation interventions are increasingly being proposed that would assist the evolution of adaptive traits in threatened species. The ambition of these projects is tempered by a number of concerns, including the potential maladaptation of manipulated organisms for contemporary and future climatic conditions in their historical ranges. Following the guidelines of the International Union for the Conservation of Nature, we use a species distribution model (SDM) to consider the potential impact of climate change on the distribution and quantity of suitable habitat for American chestnut (Castanea dentata), a functionally extinct forest species that has been the focus of various restoration efforts for over 100 years. Consistent with other SDMs for North American trees, our model shows contraction of climatically suitable habitat for American chestnut within the species’ historical range and the expansion of climatically suitable habitat in regions to the north of it by 2080. These broad changes have significant implications for restoration practice. In particular, they highlight the importance of germplasm conservation, local adaptation, and addressing knowledge gaps about the interspecific interactions of American chestnut. More generally, this model demonstrates that the goals of assisted evolution projects, which often aim to maintain species in their native ranges, need to account for the uncertainty and novelty of future environmental conditions.  more » « less
Award ID(s):
1632670
NSF-PAR ID:
10101020
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biodiversity and Conservation
ISSN:
0960-3115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Streamflow and water temperature are primary variables influencing the distribution of freshwater taxa. Climate‐induced changes in these variables are already causing shifts in species distributions, with continued changes projected in the coming decades. The Mobile River Basin (MRB), located in the southeastern United States, contains some of the highest levels of temperate freshwater biodiversity in North America. We integrated species distribution data with contemporary and future streamflow and water temperature data as well as other physical habitat data to characterize occurrence probabilities of fish species in the MRB with the goal of identifying current and future areas of high conservation value.

    Location

    Mobile River Basin, southeastern United States.

    Methods

    We used a maximum entropy approach to estimate baseline and future occurrence probability distributions for 88 fish species in the MRB based on model‐generated streamflow and water temperature as well as geologic, topographic and land cover data. Areas of conservation prioritization were identified based on regions that contain suitable habitat for high levels of biodiversity according to baseline and future conditions while accounting for uncertainty associated with multiple future climate projections.

    Results

    On average, flow (28%), water temperature (28%) and geology (30%) contribute evenly to determining suitable habitat for fish species in the MRB. Based on baseline and future species distribution model estimates, high priority streams (best 10%) are largely concentrated in the eastern portion of the MRB, with a majority (51%) located within the Coosa and Tallapoosa River systems.

    Main conclusion

    We provide a framework that uses relevant hydrologic and environmental data in the context of future climatic uncertainty to estimate areas of freshwater conservation opportunity in the coming decades. While streamflow and water temperature represent important habitat for freshwater fishes in the MRB, distributions are also constrained by other aspects of the physical environment.

     
    more » « less
  2. Abstract Aim

    Given that salamanders have experienced large shifts in their distributions over time, we determined how each species ofPlethodonin the Pacific Northwest would respond to climate change. We incorporated several greenhouse scenarios both on a species‐by‐species basis, and also using phylogenetic groups, with the aim to determine the best course of action in managing land area to conserve diversity in this group.

    Location

    Pacific Northwest of the United States (northern CA, OR, WA, ID, and MT).

    Major taxa studied

    WesternPlethodonsalamanders.

    Methods

    Species distribution models were estimated using MaxEnt for the current time period and for several future climate scenarios using bioclimatic data layers. We used several methods to quantify the change in habitat suitability over time from the models. We explored aspects of the climate layers to determine whether we can expect a concerted response to climate change due to similarity in ecological niche or independent responses that could be harder to manage.

    Results

    The distribution of westernPlethodonsalamander species is strongly influenced by precipitation and less so by temperature. Species responses to climate change resulted in both increases and decreases in predicted suitable habitat, though most species ranges do not contract, especially when taken as a phylogenetic group.

    Main conclusions

    While some established habitats may become more or less climatically suitable, the overall distribution of species in this group is unlikely to be significantly affected. Clades ofPlethodonspecies are unlikely to be in danger of extirpation despite the possibility that individual species may be threatened as a result of limited distributions. Grouping species into lineages with similar geographic ranges can be a viable method of determining conservation needs. More biotic and dispersal information is needed to determine the true impact that changes in climate will have on the distribution ofPlethodonspecies.

     
    more » « less
  3. Abstract Aim

    Whole‐genome duplication (polyploidy) can influence the biogeography and ecology of plants that differ in ploidy level (cytotype). Here, we address how two consequences of plant polyploidy (parapatry of cytotypes and altered species interactions) shape the biogeography of herbivorous insects.

    Location

    Warm deserts of North America.

    Taxa

    Gall midges (Asphondylia auripilagroup, Diptera: Cecidomyiidae) that attack three parapatric cytotypes of creosote bush (Larrea tridentata, Zygophyllaceae).

    Methods

    We surveyedAsphondyliaspecies diversity at 177 sites across a 2300‐km extent. After noting a correspondence between the distributions of eightAsphondyliaspecies andL. tridentatacytotypes, we fine‐mappedAsphondyliaspecies range limits with transects spanning cytotype contact zones. We then tested whether plant–insect interactions and/or abiotic factors explain this coincidence by (a) comparing attack rates and gall midge communities on alternative cytotypes in a narrow zone of sympatry and (b) using species distribution models (SDMs) to determine if climatically suitable habitat for each midge species extended beyond cytotype contact zones.

    Results

    The range limits of 6/17Asphondyliaspecies (including two novel putative species confirmed withCOIsequencing) perfectly coincided with the contact zone of diploid and tetraploidL. tridentata. One midge species was restricted to diploid host plants while five were restricted to tetraploid and hexaploid host plants. Where diploid and tetraploidL. tridentataare sympatric, cytotype‐restricted midge species more frequently attacked their typical host andAsphondyliacommunity structure differed markedly between cytotypes.SDMs predicted that distributions of cytotype‐restricted midge species were not constrained by climatic conditions near cytotype contact zones.

    Main conclusions

    Contact zones between plant cytotypes are dispersal barriers for manyAsphondyliaspecies due to plant–insect interactions. The distribution ofL. tridentatacytotypes therefore shapes herbivore species ranges and herbivore community structure across North American deserts. Our results demonstrate that polyploidy in plants can affect the biogeography of ecological communities.

     
    more » « less
  4. Abstract

    Consistent shoreline development and urbanization have historically resulted in the loss of wetlands. However, some construction activities have inadvertently resulted in the emergence of new tidal wetlands, with prominent examples of such anthropogenic wetlands found within the Hudson River Estuary. Here, we utilize two of these anthropogenically created tidal wetlands to explore the sedimentary and hydrologic conditions driving wetland development from a restoration perspective. Tivoli North is an emergent freshwater tidal marsh, while Tivoli South is an intertidal mudflat with vegetation restricted to the seasonal growth of invasive water chestnut during summer months. Using a combination of sediment traps, cores, and tidal flux measurements, we present highly resolved sediment budgets from these two protected bays and parameterize trapping processes responsible for their divergent wetland evolution. Utilizing a 16‐year tidal flux dataset, we observe net sediment trapping in Tivoli North for most years, with consistent trapping throughout the year. Conversely, flux measurements at Tivoli South reveal net sediment loss over the study period, with trapping constrained to the summer months. Here, we explore potential mechanisms responsible for these contrasting accumulation regimes, including initial geological differences, sediment loading, and human land use changes, with a focus on the invasion of emergent aquatic vegetation. Results suggest that water chestnut is contributing to these divergent morphologies by inhibiting sediment trapping and facilitating erosion, thereby preventing marsh nucleation in Tivoli South. The longevity of this dataset highlights the capacity of aquatic vegetation to regulate sediment exchange and geomorphology in enclosed bays when provided with an opportunity to colonize. The results of this project provide evidence to inform the management of restoration projects in river systems with tidal wetlands, especially those affected by invasive species of aquatic vegetation.

     
    more » « less
  5. Abstract

    Pleistocene glacial cycles drastically changed the distributions of taxa endemic to temperate rainforests in the Pacific Northwest, with many experiencing reduced habitat suitability during glacial periods. In this study, we investigate whether glacial cycles promoted intraspecific divergence and whether subsequent range changes led to secondary contact and gene flow. For seven invertebrate species endemic to the PNW, we estimated species distribution models (SDMs) and projected them onto current and historical climate conditions to assess how habitat suitability changed during glacial cycles. Using single nucleotide polymorphism (SNP) data from these species, we assessed population genetic structure and used a machine‐learning approach to compare models with and without gene flow between populations upon secondary contact after the last glacial maximum (LGM). Finally, we estimated divergence times and rates of gene flow between populations. SDMs suggest that there was less suitable habitat in the North Cascades and Northern Rocky Mountains during glacial compared to interglacial periods, resulting in reduced habitat suitability and increased habitat fragmentation during the LGM. Our genomic data identify population structure in all taxa, and support gene flow upon secondary contact in five of the seven taxa. Parameter estimates suggest that population divergences date to the later Pleistocene for most populations. Our results support a role of refugial dynamics in driving intraspecific divergence in the Cascades Range. In these invertebrates, population structure often does not correspond to current biogeographic or environmental barriers. Rather, population structure may reflect refugial lineages that have since expanded their ranges, often leading to secondary contact between once isolated lineages.

     
    more » « less