Segmentation of multiple surfaces in optical coherence tomography (OCT) images is a challenging problem, further complicated by the frequent presence of weak boundaries, varying layer thicknesses, and mutual influence between adjacent surfaces. The traditional graph-based optimal surface segmentation method has proven its effectiveness with its ability to capture various surface priors in a uniform graph model. However, its efficacy heavily relies on handcrafted features that are used to define the surface cost for the “goodness” of a surface. Recently, deep learning (DL) is emerging as a powerful tool for medical image segmentation thanks to its superior feature learning capability. Unfortunately, due to the scarcity of training data in medical imaging, it is nontrivial for DL networks toimplicitlylearn the global structure of the target surfaces, including surface interactions. This study proposes to parameterize the surface cost functions in the graph model and leverage DL to learn those parameters. The multiple optimal surfaces are then simultaneously detected by minimizing the total surface cost whileexplicitlyenforcing the mutual surface interaction constraints. The optimization problem is solved by the primal-dual interior-point method (IPM), which can be implemented by a layer of neural networks, enabling efficient end-to-end training of the whole network. Experiments on spectral-domain optical coherence tomography (SD-OCT) retinal layer segmentation demonstrated promising segmentation results with sub-pixel accuracy. 
                        more » 
                        « less   
                    
                            
                            Optimal surface segmentation with convex priors in irregularly sampled space
                        
                    
    
            Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally optimal surfaces in volumetric datasets. The method is widely used in numerous medical image segmentation applications. However, nodes in the graph based optimal surface segmentation method typically encode uniformly distributed orthogonal voxels of the volume. Thus the segmentation cannot attain an accuracy greater than a single unit voxel, i.e. the distance between two adjoining nodes in graph space. Segmentation accuracy higher than a unit voxel is achievable by exploiting partial volume information in the voxels which shall result in non-equidistant spacing between adjoining graph nodes. This paper reports a generalized graph based multiple surface segmentation method with convex priors which can optimally segment the target surfaces in an irregularly sampled space. The proposed method allows non-equidistant spacing between the adjoining graph nodes to achieve subvoxel segmentation accuracy by utilizing the partial volume information in the voxels. The partial volume information in the voxels is exploited by computing a displacement field from the original volume data to identify the subvoxel-accurate centers within each voxel resulting in non-equidistant spacing between the adjoining graph nodes. The smoothness of each surface modeled as a convex constraint governs the connectivity and regularity of the surface. We employ an edge-based graph representation to incorporate the necessary constraints and the globally optimal solution is obtained by computing a minimum s-t cut. The proposed method was validated on 10 intravascular multi-frame ultrasound image datasets for subvoxel segmentation accuracy. In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-dimensional segmentations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1733742
- PAR ID:
- 10106170
- Date Published:
- Journal Name:
- Medical image analysis
- Volume:
- 54
- ISSN:
- 1361-8423
- Page Range / eLocation ID:
- 63-75
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Shape priors have been widely utilized in medical image segmentation to improve segmentation accuracy and robustness. A major way to encode such a prior shape model is to use a mesh representation, which is prone to causing self-intersection or mesh folding. Those problems require complex and expensive algorithms to mitigate. In this paper, we propose a novel shape prior directly embedded in the voxel grid space, based on gradient vector flows of a pre-segmentation. The flexible and powerful prior shape representation is ready to be extended to simultaneously segmenting multiple interacting objects with minimum separation distance constraint. The segmentation problem of multiple interacting objects with shape priors is formulated as a Markov Random Field problem, which seeks to optimize the label assignment (objects or background) for each voxel while keeping the label consistency between the neighboring voxels. The optimization problem can be efficiently solved with a single minimum s-t cut in an appropriately constructed graph. The proposed algorithm has been validated on two multi-object segmentation applications: the brain tissue segmentation in MRI images and the bladder/prostate segmentation in CT images. Both sets of experiments showed superior or competitive performance of the proposed method to the compared state-of-the-art methods.more » « less
- 
            The use of computer-aided manufacturing (CAM) software is essential in the rapid production of high-quality computer numerical control (CNC) machining toolpaths for complex parts. Typical CAM software relies on analytical representations of part geometry, where curves and surfaces are described by parametric functions. This paper proposes the use of a novel way to represent part geometry known as a voxel model. A voxel model uses a three-dimensional array of small cubes to represent a part volume; these cubes, or voxels, are the three-dimensional analog of two-dimensional pixels in an image. The use of voxels for a CAM application enables higher surface complexity, simplified collision checking, and more robust analysis of material removal than would be possible with typical parametric CAM. The unique capabilities of the voxel-based CAM approach described in this paper enable rapid production of high-quality 5-axis toolpaths for machining complex parts, such as the centrifugal compressor assembly that is presented in this work.more » « less
- 
            Abstract PurposeTo introduce a method for the estimation of the ideal current patterns (ICP) that yield optimal signal‐to‐noise ratio (SNR) for realistic heterogeneous tissue models in MRI. Theory and MethodsThe ICP were calculated for different surfaces that resembled typical radiofrequency (RF) coil formers. We constructed numerical electromagnetic (EM) bases to accurately represent EM fields generated by RF current sources located on the current‐bearing surfaces. Using these fields as excitations, we solved the volume integral equation and computed the EM fields in the sample. The fields were appropriately weighted to calculate the optimal SNR and the corresponding ICP. We demonstrated how to qualitatively use ICP to guide the design of a coil array to maximize SNR inside a head model. ResultsIn agreement with previous analytic work, ICP formed large distributed loops for voxels in the middle of the sample and alternated between a single loop and a figure‐eight shape for a voxel 3‐cm deep in the sample's cortex. For the latter voxel, a surface quadrature loop array inspired by the shape of the ICP reached of the optimal SNR at 3T, whereas a single loop placed above the voxel reached only of the optimal SNR. At 7T, the performance of the two designs decreased to and , respectively, suggesting that loops could be suboptimal at ultra‐high field MRI. ConclusionICP can be calculated for human tissue models, potentially guiding the design of application‐specific RF coil arrays.more » « less
- 
            Medical image analysis using deep learning has recently been prevalent, showing great performance for various downstream tasks including medical image segmentation and its sibling, volumetric image segmentation. Particularly, a typical volumetric segmentation network strongly relies on a voxel grid representation which treats volumetric data as a stack of individual voxel `slices', which allows learning to segment a voxel grid to be as straightforward as extending existing image-based segmentation networks to the 3D domain. However, using a voxel grid representation requires a large memory footprint, expensive test-time and limiting the scalability of the solutions. In this paper, we propose Point-Unet, a novel method that incorporates the eciency of deep learning with 3D point clouds into volumetric segmentation. Our key idea is to rst predict the regions of interest in the volume by learning an attentional probability map, which is then used for sampling the volume into a sparse point cloud that is subsequently segmented using a point-based neural network. We have conducted the experiments on the medical volumetric segmentation task with both a small-scale dataset Pancreas and large-scale datasets BraTS18, BraTS19, and BraTS20 challenges. A comprehensive benchmark on dierent metrics has shown that our context-aware Point-Unet robustly outperforms the SOTA voxel-based networks at both accuracies, memory usage during training, and time consumption during testing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    