skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mass-transfer driven spinodal decomposition in a ternary polymer solution
Nonsolvent induced phase separation (NIPS) is a widely occuring process used in industrial membrane production, nanotechnology and Nature to produce microstructured polymer materials. A variety of process-dependent morphologies are produced when a polymer solution is exposed to a nonsolvent that, following a period where mass is exchanged, precipitates and solidifies the polymer. Despite years of investigation, both experimental and theoretical, many questions surround the pathways to the microstructures that NIPS can produce. Here, we provide simulation results from a model that simultaneously captures both the processess of solvent/nonsolvent exchange and phase separation. We show that the time it takes the nonsolvent to diffuse to the bottom of the film is an important timescale, and that phase separation is possible at times both much smaller and much larger than this scale. Our results include both one-dimensional simulations of the mass transfer kinetics and two- and three-dimensional simulations of morphologies at both short and long times. We find good qualitative agreement with experimental heuristics, but we conclude that an additional model for the vitrification process will be key for fully explaining experimental observations of microstructure formation.  more » « less
Award ID(s):
1725797
PAR ID:
10108553
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
15
Issue:
23
ISSN:
1744-683X
Page Range / eLocation ID:
4614 to 4628
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 2-Methylpyrazine (2MP), a flavoring agent, was identified and used as a novel greener solvent for nonsolvent-induced phase separation (NIPS) fabrication of poly(ether sulfone) (PES) ultrafiltration (UF) membranes. Flat-sheet membranes were fabricated with 2MP-cosolvent blends, N,N-dimethylacetamide (DMAc), or dimethyl sulfoxide (DMSO), to investigate the influence of solvent choice on membrane properties and performance. The resulting membranes were characterized to assess morphology, productivity, and molecular weight cutoff (MWCO). In addition, kinetic and thermodynamic aspects of solvent choice on the polymer “dope” solutions during the NIPS process were examined. 2MP-cosolvent blends resulted in membranes with noticeably different morphologies, which arise from miscibility-hindered solvent–nonsolvent exchange during membrane formation. Membrane permeance was significantly lower for 2MP-cosolvent membranes when compared to DMAc and DMSO membranes; however, their MWCOs were clearly decreased. This initial study shows that 2MP is a promising greener solvent candidate for NIPS, and further investigations are warranted. 
    more » « less
  2. Abstract Surface segregation in blended polymer films has attracted much interest in fundamental research as well as for practical applications. A variety of methodologies have been proposed for controlling surface segregation. They often require long annealing times, however, to achieve thermodynamic equilibrium. Here, a strategy and proof‐of‐principle experiments are described to control surface segregation of thin block‐copolymer (BCP) layers on top of a homopolymer in a single casting step from blended BCP/homopolymer solutions. The surface coverage by the minor constituent BCP (2–10 wt%) is accomplished despite almost identical surface energies of BCP and homopolymer constituents. Immersing this casted solution into water for nonsolvent induced phase separation (NIPS), a nonequilibrium process, affords solidified bilayer ultrafiltration membranes composed of a thin porous surface layer of self‐assembled BCP atop an asymmetric porous homopolymer substructure. Key to successful BCP surface segregation is the choice of a binary solvent system based on careful considerations of solvent surface energies and polymer‐solvent interaction parameters. Furthermore, stabilizing the BCP micellar structure by a divalent metal additive is also essential. The approach provides a cost‐effective method for fabricating bilayer‐type asymmetric ultrafiltration membranes with uniform BCP self‐assembly based selective top surface pore layers in a single casting step. 
    more » « less
  3. Polymer nanocomposite (PNC) films are of interest for many applications including electronics, energy storage, and advanced coatings. In phase-separating PNCs, the interplay between thermodynamic and kinetic factors governs the assembly of polymer-grafted nanoparticles (NPs), which directly influences material properties. Understanding how processing parameters affect the structure-property relationship of PNCs is important for designing advanced materials. This thesis provides insight by investigating a model PNC system of poly(methyl methacrylate)-grafted nanoparticles (PMMA-NPs) embedded in a poly(styrene-ran-acrylonitrile) (SAN) matrix. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was developed to quantify the distribution of NPs within PMMA-NP/SAN films, enabling precise 3D reconstruction of PNC structures. Experimental parameters such as primary ion beam angle and charge compensation were optimized to enhance secondary ion signals and depth resolution. Upon annealing in the twophase region, PMMA-NP/SAN films exhibited phase separation and surface segregation, leading to morphological evolutions characterized by atomic force microscopy (AFM), ToF-SIMS, water contact angle measurements, and transmission electron microscopy. By systematically exploring the effects of film thickness on PNC structures, we found that film thickness-induced confinement reduces lateral phase separation and enhances NP dispersion at the surface. A dimensional crossover from three to two dimensions was observed around 240 nm, below which surface-directed spinodal decomposition is suppressed. As a result of phase separation and surface segregation, six distinct bulk morphologies were identified, allowing for the construction of a morphology map correlating film thickness and annealing time. Among these morphologies, percolated structures were found to improve mechanical properties such as hardness and reduced modulus, as measured using AFM nanoindentation. Notably, interconnected networks show the highest hardness and modulus at both low and high force loadings. Additionally, Marangoni-induced hexagonal honeycomb patterns were observed in spin-coated as-cast PMMA-NP/SAN films. By changing to a less volatile solvent, these defects were eliminated, demonstrating the importance of solvent selection in achieving uniform and high-quality thin films. These findings demonstrate the potential for precise control of surface-enriched and phase-separated microstructures in PNC films through tailoring processing conditions. This thesis advances the understanding of processing-structure-property relationships in PNCs, providing a foundation for designing highly functional materials with broad industrial applications. 
    more » « less
  4. Abstract Reversed phase and size‐exclusion chromatography methods are commonly used for protein separations, although they are based on distinctly different principles. Reversed phase methods yield hydrophobicity‐based (loosely‐termed) separation of proteins on porous supports, but tend to be limited to proteins with modest molecular weights based on mass transfer limitations. Alternatively, size‐exclusion provides complementary benefits in the separation of higher mass proteins based on entropic, not enthalpic, processes, but tend to yield limited peak capacities. In this study, microbore columns packed with a novel trilobal polypropylene capillary‐channeled polymer fiber were used in a reversed phase modality for the separation of polypeptides and proteins of molecular weights ranging from 1.4 to 660 kDa. Chromatographic parameters including gradient times, flow rates, and trifluoroacetic acid concentrations in the mobile phase were optimized to maximize resolution and throughput. Following optimization, the performance of the trilobal fiber column was compared to two commercial‐sourced columns, a superficially porous C4‐derivatized silica and size exclusion, both of which are sold specifically for protein separations and operated according to the manufacturer‐specified conditions. In comparison to the commercial columns, the fiber‐based column yielded better separation performance across the entirety of the suite, at much lower cost and shorter separation times. 
    more » « less
  5. With the growing number of applications for thin polymer films (e.g., corrosion-resistant coatings, photovoltaics, and optoelectronics), there is an urgent need to develop or advance cost-effective, versatile, and high-throughput manufacturing processes to produce thin polymer films and coatings with controllable properties (e.g., morphology, composition). In this work, we present a simple, cost-effective, and scalable approach: the air-assisted electrospray method for thin film coating. We systematically investigate its capabilities for producing coatings with a wide range of surface morphologies, its compatibility with three-dimensional substrates, and the fundamental understanding of the process. Through systematic control of concentration, needle configuration, and polymer selection, we demonstrate the ability to produce coating morphologies with diverse structural characteristics and excellent reproducibility. Notably, the introduction of air assistance through a coaxial needle greatly enlarges the range of achievable morphologies, particularly at lower concentrations. We also found that the position of the airflow relative to the solution is critical for determining the polymer film properties. Furthermore, we demonstrate its broad application potential in the fabrication of binderless electrodes for sodium-ion batteries. 
    more » « less