skip to main content


Title: Retention-focused, S-STEM Supported Program
This work in progress paper discusses XXX, an NSF S-STEM supported program, which employs known best practices to support and retain underrepresented students in engineering through graduation. The goal is to graduate more students from underrepresented populations in an effort to ultimately diversity the engineering workforce. This paper describes this program’s unique implementation of a specific subset of retention best practices, such as facilitating (1) the development of both a feeling of institutional inclusion and engineering identity by providing opportunities for faculty-student and student-student interaction as well as major and career exploration, (2) academic support, including support for the development of broader success skills, such as time management, and (3) professional development. These opportunities are embedded in an organized, cohort-based, program consisting of: (1) a brief summer bridge program, (2) a common fall professional development course, and (3) a common spring course exploring the role of engineering in societal development. Throughout its implementation, the program faced and addressed challenges related to recruitment as well as program length and cost. Now, in its eighth year, three with S-STEM funding, an analysis of program data provides evidence of increased retention of the targeted populations in engineering to the second year, but only a small positive effect on overall retention. Results of investigations of why students leave, lessons learned through the development, implementation, and assessment of this program, and suggested actions for continued progress in increasing retention of underrepresented populations are presented.  more » « less
Award ID(s):
1644119
NSF-PAR ID:
10108739
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Academy of Engineering Success (AcES) program, established in 2012 and supported by NSF S-STEM award number 1644119 throughout 2016-2021, employs literature-based, best practices to support and retain underprepared and underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. A total of 71 students, including 21 students supported by S-STEM scholarships, participated in the AcES program between 2016-2019 at a large R1 institution in the mid-Atlantic region. All AcES students participate in a common program during their first year, comprised of: a one-week summer bridge experience, a common fall professional development course and spring “Engineering in History” course, and a common academic advisor. These students also have opportunities for: (1) faculty-student, student-student, and industry mentor-student interaction, (2) academic support and student success education, and (3) major and career exploration – all designed to help students develop feelings of institutional inclusion, engineering self-efficacy and identity, and academic and professional success skills. They also participate in the GRIT, Longitudinal Assessment of Engineering Self-Efficacy (LAESE), and the Motivated Strategies for Learning Questionnaire (MSLQ) surveys plus individual and focus group interviews at the start, midpoint, and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, their beliefs related to the intrinsic value of engineering and learning, their feelings of inclusion and test anxiety, and their self-efficacy related to engineering, math, and coping skills. The interviews provide information related to the student experience, feelings of inclusion, and program impact. Institutional data, combined with the survey and interview responses, are used to examine four research questions designed to examine the relationship of the elements of the AcES program to participants’ academic success and retention in engineering. Early analyses of the student retention data and survey responses from the 2017 and 2018 cohorts indicated students who ultimately left engineering before the start of their second year initially scored higher in areas of engineering self-efficacy and test anxiety, than those who stayed in engineering, while those who retained to the second year began their engineering education with lower self-efficacy scores, but higher scores related to the belief in the intrinsic value of engineering, learning strategy use, and coping self-efficacy. These results suggest that students who start with unrealistically high expectations of their performance leave engineering at higher rates than students who start with lower personal performance expectations, but have stronger value of the field and strategies for meeting challenges. These data appear to support the Kruger-Dunning effect in which students with limited knowledge of a specific field overestimate their abilities to perform in that area or underestimate the level of effort success may require. This paper will add an analysis of the academic success and retention data from 2019 cohort to this research, discuss the impact of COVID-19 to this program and research, as well as illuminate the quantitative results with the qualitative data from individual and focus group interviews regarding the aspects of the AcES program that impact student success, their expectations and methods for overcoming academic challenges, and their feelings of motivation and inclusion. 
    more » « less
  2. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering. 
    more » « less
  3. Many historically minoritized graduate students, here defined as Women, Latinx and Black/African American students, in Science, Technology, Engineering and Math (STEM) experience unwelcome or even hostile ecosystems or environments. Many of the social expectations are that historically minoritized graduate students in STEM should assimilate or acclimate to the cultural, where assimilation/acclimation are defined as cultural conformation vs. social acceptance of a student authentic self/identity. They may also experience forms of continuous microaggressions and isolation. The effects of chronic external stressors, such as experiencing discrimination and social isolation, on increased mental health disorders and decreased physiological health is well known [1-3]. Yet, evidence-based practices of support systems specifically for graduate students from historically marginalized communities to reduce the effects of climates of intimidation are not common. Indeed, researchers have found that such students “would benefit if colleges and universities attempted to deconstruct climates of intimidation [4]” and it has also been shown that teaching underrepresented minority students empowerment skills can improve academic success [5]. Self-advocacy originates from the American Counseling Association (ACA) and the Learning Disabilities (LD) communities for effective counseling that promotes academic success and is based on a social justice framework [6]. The underlying principle of self-advocacy is that supporting skills and knowledge development in the three areas of self-advocacy leads to a student’s long term participation and ultimately academic success in areas such as post-secondary education and STEM. The pillars of the self-advocacy program are centered on (i) Empowerment, (ii) Promoting self-awareness and (iii) Social Justice and programming in the GRaduate Education for Academically Talented Students (GREATS) is aligned and repeated along these three pillars. The current professional development program is in its third year of implementation and to date twenty-seven students have participated in the program. This work in progress paper outlines the evaluation of a self-advocacy program for historically marginalized graduate students in STEM at the University of Illinois Chicago is a minority serving institution as both an Hispanic Serving Institution (HSI) and an Asian American Native American Pacific Islander Serving Institution (AANAPISI). [1] S. Stansfeld and B. Candy, "Psychosocial work environment and mental health--a meta-analytic review," ed, 2006. [2] E. M. Smith, "Ethnic minorities: Life stress, social support, and mental health issues," The Counseling Psychologist, vol. 13, no. 4, pp. 537-579, 1985. [3] D. M. Frost, K. Lehavot, and I. H. Meyer, "Minority stress and physical health among sexual minority individuals," Journal of behavioral medicine, vol. 38, no. 1, pp. 1-8, 2015. [4] R. T. Palmer, D. C. Maramba, and T. E. Dancy, "A Qualitative Investigation of Factors Promoting the Retention and Persistence of Students of Color in STEM," The Journal of Negro Education, vol. 80, no. 4, pp. 491-504, 2011. [Online]. Available: http://www.jstor.org/stable/41341155. [5] A. R. Dowden, "Implementing Self-Advocacy Training Within a Brief Psychoeducational Group to Improve the Academic Motivation of Black Adolescents," The Journal for Specialists in Group Work, vol. 34, no. 2, pp. 118-136, 2009/04/28 2009, doi: 10.1080/01933920902791937. 
    more » « less
  4. The Academy of Engineering Success (AcES) program employs known best practices to support engineering students with the goal of retaining them through graduation and diversifying the engineering workforce. The AcES program started in 2012 and has been supported by NSF SSTEM award number DUE-1644119 since 2016. Cohorts from 2016, 2017, 2018, and 2019 consist of 12, 20, 22, and 17 students, respectively. Twenty-one renewable S-STEM supported scholarships have been awarded to students since 2016. AcES students participate in a one-week pre-fall bridge experience, a common fall professional development course, and a course emphasizing the role of engineers in societal development in the spring semester. Starting in the bridge experience and continuing until graduation, students participate in curricular and co-curricular activities with the goals of: (1) fostering feelings of belonging in engineering and institutional inclusion, (2) encouraging professional development, and (3) supporting academic achievement and student success. These goals are achieved by providing: (1) opportunities for interaction between students and peers, faculty, and industry mentors; (2) major and career exploration opportunities; and (3) academic support and student success education in areas such as time management and study skills. AcES students participate in the GRIT, LAESE, and MSLQ surveys, as well as in focus groups and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a quantitative measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Qualitative data from the focus group and individual interview responses are used to provide insight into the quantitative survey results. Surprisingly, a previous analysis of the 2017 cohort survey responses revealed that students who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. Hence, the 2018 cohort survey responses were analyzed in relation to retention and are presented along with qualitative results to provide a holistic understanding of student retention. Results from both the 2017 and 2018 cohorts are presented and discussed in the paper and poster. 
    more » « less
  5. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170). 
    more » « less