skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A 100kW Switched-Tank Converter for Electric Vehicle Application
This paper presents a 100kW one-cell switched-tank converter (STC) for electric vehicle (EV) application. A new evaluation method that evaluates different converter topologies has been proposed in this paper to show the advantages of the STC over the boost converter and 3-level flying capacitor multilevel (FCML) converter. Both non-interleaved (1-phase) and interleaved (2-phase and 3-phase) operation of the STC have been analyzed. The analytical study shows that it is difficult to achieve the optimum design of the passive components such as input and output capacitors in 1-phase converter because of the high RMS current flowing through them. This means the passive components need to be over-designed in order to meet the current stress requirement. For instance, the designed capacitance of input capacitor is several times of the required value, which leads to bulky capacitor size. Therefore, this paper evaluates the potentials of using 2-phase and 3-phase interleaved operation to address this issue. Two operation modes, zero-voltage switching (ZVS) mode and zero-current switching (ZCS) mode, are evaluated to show the ZCS operation mode is more suitable for the presented converter with interleaved operation. By using the interleaving concept, the predicted 100kW 3-phase interleaved converter can achieve 60% size reduction based on the 1-phase converter design. And the predicted power density of the 3-phase interleaved STC can achieve 115kW/L power density. Simulation results are provided to validate the theoretical analysis. Both 1-phase and 3-phase 100kW prototypes under developing are shown in this paper.  more » « less
Award ID(s):
1810428
PAR ID:
10109870
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE Applied Power Electronics Conference and Exposition (APEC)
Page Range / eLocation ID:
1690 to 1697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multilevel modular resonant switched-capacitor converter can achieve either zero-current switching (ZCS) or zero-voltage switching (ZVS) by utilizing different converter control strategies. This paper presents a comprehensive way to compare the root mean square (RMS) value of current flowing through switching devices in both ZCS operation and ZVS operation. The study shows that with appropriate converter parameter design, the ZVS operation allows the RMS value of switch current at most 10% lower than that in ZCS operation. Therefore, the converter operating at ZVS mode has the potential to achieve higher efficiency comparing to the converter that operates at ZCS mode due to less semiconductor conduction loss. Furthermore, the ZVS operation can reduce the power loss due to MOSFET output capacitance. A 6x converter with 54V input voltage, 9V output voltage and 600W power rating is used as an example to show the detailed design procedure. Simulation results are provided to verify the theoretical analysis. Also, a 600W lab prototype that has 6 to 1 voltage conversion ratio has been built to verify the theoretical analysis. 
    more » « less
  2. This paper compares three different dc-dc topologies, i.e. boost converter, three-level flying capacitor multilevel converter (FCMC) and one-cell switching tank converter (STC) for a 100 kW electric vehicle power electronic system. This bidirectional dc-dc converter targets 300 V - 600 V voltage conversion. Total semiconductor loss index (TSLI) has been proposed to evaluate topologies and device technologies. The boost converter and one-cell STC have been fairly compared by utilizing this index. The simulation results of a 100 kW one-cell STC working at zero current switching (ZCS) mode have been provided. A 100 kW hardware prototype using 1200 V 600 A SiC power module has been built. The estimated efficiency is about 99.2% at 30 kW, 99.13% at half load, and 98.64% at full load. The power density of the main circuits is about 42 kW/L 
    more » « less
  3. This paper presents a new Multiphase Dual Inductor Hybrid (MP-DIH) Converter for application in data center and telecommunication systems. The converter is based on addition of two output filter inductors to a Dickson switched-capacitor converter. The inductors are operated in multiple phases that are non-overlapped and evenly distributed over one switching cycle, completely soft-charging all flying capacitors even in the presence of practical capacitor mismatches and voltage ripples. In this converter operation, each branch of the switched-capacitor network is activated individually in one charging phase, and two interleaved inductors are employed to softly charge and discharge the capacitors to achieve high efficiency without any complex capacitor sizing or split phase operation. To verify the topology and its soft-charging advantages, a 48V-to-1.8V 20W experimental converter prototype is constructed. The converter achieves 92.4% peak efficiency for 40V-to-1.8V conversion and 92.1% peak efficiency for 48V-to-1.8V conversion at 4A load, and with 20% capacitance variations. 
    more » « less
  4. This article proposes a predictive modulation scheme for a differential mode resonant switched capacitor rectifier (DMRSCR) to achieve high efficiency and power factor correction (PFC) for wide voltage gain. The modulation scheme ensures extensive zero-voltage switching (ZVS) turn-ON on all the switches under varying sinusoidal input voltage without requiring additional circuits or sensors. Four key control parameters, namely, phase shift ratio, duty cycle ratios, and switching frequency, are controlled for the converter to maintain ZVS turn-ON, PFC, output voltage regulation, and reduced resonant inductor current ripple. The article outlines a detailed DMRSCR model to deduce the dependency of the four control and converter design parameters on the converter operation. Based on the model, a complete converter design process is provided. A DMRSCR prototype rated at 1.1 kW was built using the underscored design methodology to validate the proposed modulation scheme, reaching a peak efficiency of 98.27% 
    more » « less
  5. In this paper, an new converter that includes isolated composite resonant multilevel converter (ICRMC) that uses composite converter concept and partial power voltage regulator (PPVR) has been proposed for telecommunication application. The proposed converter can achieve high efficiency at nominal operating point since it takes minimum effort to regulate the output voltage at this point. A comparative study shows that with the proposed two operation modes of ICRMC, the proposed converter has the best capability to maintain lowest total semiconductor power stress among the existing state of the art solutions when the input voltage varies from 36V to 60V. Furthermore, zero current switching (ZCS) can be always achieved on the switching devices in ICRMC under different operating points. A 600W converter has been simulated to validate the theoretical analysis. The estimated peak efficiency can be as high as 97.65%. Fully debugged prototype and experimental results are provided in this paper. 
    more » « less