Abstract Dielectrophoresis (DEP) is a force applied to microparticles in nonuniform electric field. This study discusses the fabrication of the glassy carbon interdigitated microelectrode arrays using lithography process based on lithographic patterning and subsequent pyrolysis of negative SU-8 photoresist. Resulting high-resistance electrodes would have the regions of high electric field at the ends of microarray as demonstrated by simulation. The study demonstrates that combining the alternating current (AC) applied bias with the direct current (DC) offset allows the user to separate subpopulations of microparticulates and control the propulsion of microparticles to the high field areas such as the ends of the electrode array. The direction of the movement of the particles can be switched by changing the offset. The demonstrated novel integrated DEP separation and propulsion can be applied to various fields including in vitro diagnostics as well as to microassembly technologies.
more »
« less
Electrokinetic movement of the microparticulates between high resistance microelectrodes under the influence of dielectrophoretic force
Dielectrophoresis is a force applied to microparticles in non-uniform electric field. The presented study discusses the fabrication of the glassy carbon interdigitated microelectrode arrays using lithography process based on lithographic patterning and subsequent pyrolysis of negative SU-8 photoresist. Resulting high resistance electrodes would have the regions of high electric field at the ends of microarray as demonstrated by simulation. The study demonstrates that combining the AC applied bias with the DC offset allows the user to separate sub-populations of microparticulates and control the propulsion of microparticles to the high field areas such as the ends of the electrode array. The direction of the movement of the particles can be switched by changing the offset. The demonstrated novel integrated DEP separation and propulsion can be applied to various fields including in-vitro diagnostics as well as to microassembly technologies.
more »
« less
- Award ID(s):
- 1661877
- PAR ID:
- 10110017
- Date Published:
- Journal Name:
- Proceedings of the World Congress of Micro- and NanoManufacturing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Micro- or nano-diodes suspended in water can propel controllably under alternating-current fields or light without the need for fuels such as hydrogen peroxide or urea. This makes them promising candidates for miniature motors in biomedical and other applications. However, the mechanisms underlying their propulsion remain unclear. This study investigates the propulsion of diodes floating in an aqueous solution at the millimeter scale, which facilitates observation of motion, allowing direct correlation with electrical measurements of device properties. We find that the diode’s propulsion is driven by forward current under an alternating-current field and by photocurrent under illumination. The velocity of propulsion scales linearly with the net current, with the rectified or photogenerated current creating an imbalance of ions at the ends of the diodes. This, in turn, generates an electric field that induces electrophoretic flow around the diode and propels the diode. Additionally, we assess the velocity of diodes intentionally damaged by high reverse bias and find that it decreases significantly because of the reduced difference between forward and reverse currents. These results suggest potential uses of diode propulsion for characterizing and separating bottom-up-grown nano-/micro- diodes based on their reverse-saturation current, as well as nanomotors formed from multiple-junction nanowire diodes that can self-propel in water under light.more » « less
-
Abstract Chemically coated micro/nanoparticles are often used in medicine to enhance drug delivery and increase drug up-take into specific areas of the body. Using a recently discovered spontaneous symmetry breaking propulsion mechanism, we demonstrate that chemically coated microparticles can swim through mucus solution under precise navigation and that certain functionalizations can dynamically change propulsion behavior. For this investigation biotin, Bitotin-PEG3-amine, and biotin chitosan were chemically functionalized onto the surfaces of magnetic microparticles using an avidin–biotin complex. These chemicals were chosen because they are used prolifically in drug delivery applications, with PEG and chitosan having well known mucoadhesive effects. Coated microparticles were then suspended in mucus synthesized from porcine stomach mucins and propelled using rotating magnetic fields. The relationship between different chemical coatings, microparticle velocity, and controllability were thoroughly explored and discussed. Results indicate that the biotinylated surface coatings altered the propulsion behavior of microparticles, with performance differences interlinked to both magnetic field properties and localized mucus properties. Precisely controlled drug carrying microparticles are envisioned to help supplant traditional drug delivery methods and enhance existing medical techniques utilizing micro/nanoparticles.more » « less
-
Abstract An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well‐defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle‐surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry‐breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro‐robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery.more » « less
-
We report that a dielectric polymer chain, constrained at both ends, sharply collapses when exposed to a high electric field. The chain collapse is driven by nonlocal dipolar interactions and anisotropic polarization of monomers, a characteristic of real polymers that prior theories were unable to incorporate. Once collapsed, a large number of chain monomers accumulate at the center location between the chain ends, locally increasing the electric field and polarization by orders of magnitude. The chain collapse is sensitive to the orientation of the applied electric field and chain stretch. Our findings not only offer new ways for rapid actuation and sensing but also provide a pathway to discover the critical physics behind instabilities and electrical breakdown in dielectric polymers.more » « less
An official website of the United States government

