skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using asymptotic embedding methods for dynamic estimation of spatial fields with mobile sensors
This paper proposes an asymptotic embedding method for the dynamic reconstruction of spatially varying fields. By assuming that the spatial field is the solution to an elliptic partial differential equation, then the elliptic PDE is embedded into a parabolic PDE which represents the time-varying estimator. An important advantage of the dynamic estimation scheme is the significant reduction in the use of sensing devices needed to reconstruct the spatial field. Static estimation schemes impose stringent conditions on the regularity of a regression matrix, which links the basis functions to the number of measurements. To further improve the performance of the dynamic estimator, a guidance scheme is proposed that repositions mobile sensors within the spatial field, which is linked to the performance of the dynamic estimator. Extensions to collaborative estimation and optimization of the placement of static sensors are also summarized to provide an integrated account on all facets of optimal dynamic estimation of spatial fields. Numerical simulations for spatial fields in one and two spatial dimensions are included along with a comparison of static reconstruction as quantified by the number of sensing devices required and the relative error.  more » « less
Award ID(s):
1825546
PAR ID:
10110162
Author(s) / Creator(s):
Date Published:
Journal Name:
2018 IEEE Conference on Decision and Control (CDC)
Page Range / eLocation ID:
2132 to 2137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work incorporates the effects that hazardous environments have on sensing devices, in the guidance of mobile platforms with onboard sensors. Mobile sensors are utilized in the state reconstruction of spatiotemporally varying processes, often described by advection-diffusion PDEs. A typical sensor guidance policy is based on a gradient ascent scheme which repositions the sensors to spatial regions that have larger state estimation errors. If the cumulative measurements of the spatial process are used as a means to represent the effects of hazardous environments on the sensors, then the sensors are considered inoperable the instance the cumulative measurements exceed a device-specific tolerance level. A binary guidance policy considered earlier repositioned the sensors to regions of larger values of the state estimation errors thus implementing an information-sensitive policy. The policy switched to an information-averse guidance the instance the cumulative effects exceeded a certain tolerance level. Such a binary policy switches the sensor velocity abruptly from a positive to a negative value. To alleviate these discontinuity effects, a ternary guidance policy is considered and which inserts a third guidance policy, the information-neutral policy, that smooths out the transitions from information-sensitive to information-averse guidance. A novelty in this ternary guidance has to do with the level-set approach which changes from a guidance towards large values of the state estimation error towards level sets of the state estimation error and eventually towards reduced values of the state estimation error. An example on an advection-diffusion PDE in 2D employing a single interior mobile sensor using both the binary and ternary guidance policies is used to demonstrate the effects of hazardous environments on both the sensor life expectancy and the performance of the state estimator. 
    more » « less
  2. The work provides a general model of communication attacks on a networked infinite dimensional system. The system employs a network of inexpensive control units consisting of actuators, sensors and control processors. In an effort to replace a reduced number of expensive high-end actuating and sensing devices implementing an observer-based feedback, the alternate is to use multiple inexpensive actuators/sensors with static output feedback. In order to emulate the performance of the high-end devices, the controllers for the multiple actuator/sensors implement controllers which render the system networked. In doing so, they become prone to communication attacks either as accidental or deliberate actions on the connectivity of the control nodes. A single attack function is proposed which models all types of communication attacks and an adaptive detection scheme is proposed in order to (i) detect the presence of an attack, (ii) diagnose the attack and (iii) accommodate the attack via an appropriate control reconfiguration. The reconfiguration employs the adaptive estimates of the controller gains and restructure the controller adaptively in order to minimize the detrimental effects of the attack on closed-loop performance. Numerical studies on a 1D diffusion PDE employing networked actuator/sensor pairs are included in order to further convey the special architecture of detection and accommodation of networked systems under communication attacks. 
    more » « less
  3. Employing mobile actuators and sensors for control and estimation of spatially distributed processes offers a significant advantage over immobile actuators and sensors. In addition to the control performance improvement, one also comes across the economic advantages since fewer devices, if allowed to be repositioned within a spatial domain, must be employed. While simulation studies of mobile actuators report superb controller performance, they are far from reality as the mechanical constraints of the mobile platforms carrying actuators and sensors have to satisfy motional constraints. Terrain platforms cannot behave as point masses without inertia; instead they must satisfy constraints which are adequately represented as path-dependent reachability sets. When the control algorithm commands a mobile platform to reposition itself in a different spatial location within the spatial domain, this does not occur instantaneously and for the most part the motion is not omnidirectional. This constraint is combined with a computationally feasible and suboptimal control policy with mobile actuators to arrive at a numerically viable control and guidance scheme. The feasible control decision comes from a continuous-discrete control policy whereby the mobile platform carrying the actuator is repositioned at discrete times and dwells in a specific position for a certain time interval. Moving to a subsequent spatial location and computing its associated path over a physics-imposed time interval, a set of candidate positions and paths is derived using a path-dependent reachability set. Embedded into the path-dependent reachability sets that dictate the mobile actuator repositioning, a scheme is proposed to integrate collocated sensing measurements in order to minimize costly state estimation schemes. The proposed scheme is demonstrated with a 2D PDE having two sets of collocated actuator-sensor pairs onboard mobile platforms. 
    more » « less
  4. . (Ed.)
    This work is concerned with the use of mobile sensors to approximate and replace the full state feedback controller by static output feedback controllers for a class of PDEs. Assuming the feedback operator associated with the full-state feedback controller admits a kernel representation, the proposed optimization aims to approximate the inner product of the kernel and the full state by a finite sum of weighted scalar outputs provided by the mobile sensors. When the full state feedback operator is time-dependent thus rendering its associated kernel time-varying, the approximation results in moving sensors with time-varying static gains. To calculate the velocity of the mobile sensors within the spatial domain the time-varying kernel is set equal to the sensor density and thus the solution to an associated advection PDE reveals the velocity field of the sensor network. To obtain the speed of the finite number of sensors, a domain decomposition based on a modification of the Centroidal Voronoi Tessellations (µ-CVT) is used to decompose the kernel into a finite number of cells, each of which contains a single sensor. A subsequent application of the µ-CVT on the velocity field provides the individual sensor speeds. The nature of this µ-CVT ensures collision avoidance by the very structure of the kernel decomposition into non-intersecting cells. Numerical simulations are provided to highlight the proposed sensor guidance. 
    more » « less
  5. Abstract Wavefront sensing is the simultaneous measurement of the amplitude and phase of an incoming optical field. Traditional wavefront sensors such as Shack-Hartmann wavefront sensor (SHWFS) suffer from a fundamental tradeoff between spatial resolution and phase estimation and consequently can only achieve a resolution of a few thousand pixels. To break this tradeoff, we present a novel computational-imaging-based technique, namely, the Wavefront Imaging Sensor with High resolution (WISH). We replace the microlens array in SHWFS with a spatial light modulator (SLM) and use a computational phase-retrieval algorithm to recover the incident wavefront. This wavefront sensor can measure highly varying optical fields at more than 10-megapixel resolution with the fine phase estimation. To the best of our knowledge, this resolution is an order of magnitude higher than the current noninterferometric wavefront sensors. To demonstrate the capability of WISH, we present three applications, which cover a wide range of spatial scales. First, we produce the diffraction-limited reconstruction for long-distance imaging by combining WISH with a large-aperture, low-quality Fresnel lens. Second, we show the recovery of high-resolution images of objects that are obscured by scattering. Third, we show that WISH can be used as a microscope without an objective lens. Our study suggests that the designing principle of WISH, which combines optical modulators and computational algorithms to sense high-resolution optical fields, enables improved capabilities in many existing applications while revealing entirely new, hitherto unexplored application areas. 
    more » « less