We construct asymptotically flat, scalar flat extensions of Bartnik data [Formula: see text], where [Formula: see text] is a metric of positive Gauss curvature on a two-sphere [Formula: see text], and [Formula: see text] is a function that is either positive or identically zero on [Formula: see text], such that the mass of the extension can be made arbitrarily close to the half area radius of [Formula: see text]. In the case of [Formula: see text], the result gives an analog of a theorem of Mantoulidis and Schoen [On the Bartnik mass of apparent horizons, Class. Quantum Grav. 32(20) (2015) 205002, 16 pp.], but with extensions that have vanishing scalar curvature. In the context of initial data sets in general relativity, the result produces asymptotically flat, time-symmetric, vacuum initial data with an apparent horizon [Formula: see text], for any metric [Formula: see text] with positive Gauss curvature, such that the mass of the initial data is arbitrarily close to the optimal value in the Riemannian Penrose inequality. The method we use is the Shi–Tam type metric construction from [Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differential Geom. 62(1) (2002) 79–125] and a refined Shi–Tam monotonicity, found by the first named author in [On a localized Riemannian Penrose inequality, Commun. Math. Phys. 292(1) (2009) 271–284].
more »
« less
Positive curvature and symmetry in small dimensions
Extending existing work in small dimensions, Dessai computed the Euler characteristic, signature, and elliptic genus for [Formula: see text]-manifolds of positive sectional curvature in the presence of torus symmetry. He also computes the diffeomorphism type by restricting his results to classes of manifolds known to admit non-negative curvature, such as biquotients. The first part of this paper extends Dessai’s calculations to even dimensions up to [Formula: see text]. In particular, we obtain a first characterization of the Cayley plane in such a setting. The second part studies a closely related family of manifolds called positively elliptic manifolds, and we prove a conjecture of Halperin in this context for dimensions up to [Formula: see text] or Euler characteristics up to [Formula: see text].
more »
« less
- Award ID(s):
- 1904354
- PAR ID:
- 10110780
- Date Published:
- Journal Name:
- Communications in Contemporary Mathematics
- ISSN:
- 0219-1997
- Page Range / eLocation ID:
- 1950053
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove that the time of classical existence of smooth solutions to the relativistic Euler equations can be bounded from below in terms of norms that measure the “(sound) wave-part” of the data in Sobolev space and “transport-part” in higher regularity Sobolev space and Hölder spaces. The solutions are allowed to have nontrivial vorticity and entropy. We use the geometric framework from [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270], where the relativistic Euler flow is decomposed into a “wave-part”, that is, geometric wave equations for the velocity components, density and enthalpy, and a “transport-part”, that is, transport-div-curl systems for the vorticity and entropy gradient. Our main result is that the Sobolev norm [Formula: see text] of the variables in the “wave-part” and the Hölder norm [Formula: see text] of the variables in the “transport-part” can be controlled in terms of initial data for short times. We note that the Sobolev norm assumption [Formula: see text] is the optimal result for the variables in the “wave-part”. Compared to low-regularity results for quasilinear wave equations and the three-dimensional (3D) non-relativistic compressible Euler equations, the main new challenge of the paper is that when controlling the acoustic geometry and bounding the wave equation energies, we must deal with the difficulty that the vorticity and entropy gradient are four-dimensional space-time vectors satisfying a space-time div-curl-transport system, where the space-time div-curl part is not elliptic. Due to lack of ellipticity, one cannot immediately rely on the approach taken in [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270] to control these terms. To overcome this difficulty, we show that the space-time div-curl systems imply elliptic div-curl-transport systems on constant-time hypersurfaces plus error terms that involve favorable differentiations and contractions with respect to the four-velocity. By using these structures, we are able to adequately control the vorticity and entropy gradient with the help of energy estimates for transport equations, elliptic estimates, Schauder estimates and Littlewood–Paley theory.more » « less
-
null (Ed.)We propose an Euler transformation that transforms a given [Formula: see text]-dimensional cell complex [Formula: see text] for [Formula: see text] into a new [Formula: see text]-complex [Formula: see text] in which every vertex is part of the same even number of edges. Hence every vertex in the graph [Formula: see text] that is the [Formula: see text]-skeleton of [Formula: see text] has an even degree, which makes [Formula: see text] Eulerian, i.e., it is guaranteed to contain an Eulerian tour. Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in several applications including 3D printing and robotics. For [Formula: see text]-complexes in [Formula: see text] ([Formula: see text]) under mild assumptions (that no two adjacent edges of a [Formula: see text]-cell in [Formula: see text] are boundary edges), we show that the Euler transformed [Formula: see text]-complex [Formula: see text] has a geometric realization in [Formula: see text], and that each vertex in its [Formula: see text]-skeleton has degree [Formula: see text]. We bound the numbers of vertices, edges, and [Formula: see text]-cells in [Formula: see text] as small scalar multiples of the corresponding numbers in [Formula: see text]. We prove corresponding results for [Formula: see text]-complexes in [Formula: see text] under an additional assumption that the degree of a vertex in each [Formula: see text]-cell containing it is [Formula: see text]. In this setting, every vertex in [Formula: see text] is shown to have a degree of [Formula: see text]. We also present bounds on parameters measuring geometric quality (aspect ratios, minimum edge length, and maximum angle of cells) of [Formula: see text] in terms of the corresponding parameters of [Formula: see text] for [Formula: see text]. Finally, we illustrate a direct application of the proposed Euler transformation in additive manufacturing.more » « less
-
In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so.more » « less
-
Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers.more » « less
An official website of the United States government

