skip to main content


Title: An Analysis of Longitudinal Trends in Consumer Thoughtson Presence and Simulator Sickness in VR Games
Since the release of the Oculus Rift CV1 in 2016, millionsof VR headsets have found their way into consumer homes.In this paper, we sought to understand what shifts have takenplace within the two years since consumer VR became avail-able. In this paper, we consider what can be learned aboutlong-term use of consumer VR through an analysis of dis-cussions in online forums devoted to VR. We gathered postsmade on the /r/Vive subreddit from the first two years after theHTC Vive’s release. We present the results from an in-depthqualitative analysis concerning immersion, presence, and sim-ulator sickness. Over time, as users moved from passive toactive, their attitudes and expectations towards immersion andsimulator sickness matured. Major trends of interest foundwere game design implementation and locomotion techniques.  more » « less
Award ID(s):
1717937
NSF-PAR ID:
10111184
Author(s) / Creator(s):
;
Date Published:
Journal Name:
CHI Play
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Virtual reality games have grown rapidly in popularity since the first consumer VR head-mounted displays were released in 2016, however comparatively little research has explored how this new medium impacts the experience of players. In this paper, we present a study exploring how user experience changes when playing Minecraft on the desktop and in immersive virtual reality. Fourteen players completed six 45 minute sessions, three played on the desktop and three in VR. The Gaming Experience Questionnaire, the i-Group presence questionnaire, and the Simulator Sickness Questionnaire were administered after each session, and players were interviewed at the end of the experiment. Participants strongly preferred playing Minecraft in VR, despite frustrations with using teleporation as a travel technique and feelings of simulator sickness. Players enjoyed using motion controls, but still continued to use indirect input under certain circumstances. This did not appear to negatively impact feelings of presence. We conclude with four lessons for game developers interested in porting their games to virtual reality. 
    more » « less
  2. null (Ed.)
    Like many natural sciences, a critical component of archaeology is field work. Despite its importance, field opportunities are available to few students for financial and logistical reasons. With little exposure to archaeological research, fewer students are entering archaeology, particularly minority students (Smith 2004; Wilson 2015). To counter these trends, we have leveraged the ongoing revolution in consumer electronics for the current, digitally-empowered generation by creating a game-based, virtual archaeology curriculum to 1) teach foundational principles of a discipline that is challenging to present in a traditional classroom by using sensory and cognitive immersion; and, 2) allow wider access to a field science that has previously been limited to only select students. Virtual reality (VR) is computer technology that creates a simulated three-dimensional world for a user to experience in a bodily way, thereby transforming data analysis into a sensory and cognitive experience. Using a widely-available, room-scale, VR platform, we have created a virtual archaeological excavation experience that conveys two overarching classroom objectives: 1) teach the physical methods of archaeological excavation by providing the setting and tools for a student to actively engage in field work; and, 2) teach archaeological concepts using a scientific approach to problem solving by couching them within a role-playing game. The current prototype was developed with the HTC Vive VR platform, which includes a headset, hand controllers, and two base stations to track the position and orientation of the user’s head and hands within a 4x4 meter area. Environments were developed using Unreal Engine 4, an open source gaming engine, to maximize usability for different audiences, learning objectives, and skill levels. Given the inherent fun of games and widespread interest in archaeology and cultural heritage, the results of this research are adaptable and applicable to learners of all ages in formal and informal educational settings. 
    more » « less
  3. Location-based or Out-of-Home Entertainment refers to experiences such as theme and amusement parks, laser tag and paintball arenas, roller and ice skating rinks, zoos and aquariums, or science centers and museums among many other family entertainment and cultural venues. More recently, location-based VR has emerged as a new category of out-of-home entertainment. These VR experiences can be likened to social entertainment options such as laser tag, where physical movement is an inherent part of the experience versus at-home VR experiences where physical movement often needs to be replaced by artificial locomotion techniques due to tracking space constraints. In this work, we present the first VR study to understand the impact of natural walking in a large physical space on presence and user preference. We compare it with teleportation in the same large space, since teleportation is the most commonly used locomotion technique for consumer, at-home VR. Our results show that walking was overwhelmingly preferred by the participants and teleportation leads to significantly higher self-reported simulator sickness. The data also shows a trend towards higher self-reported presence for natural walking. 
    more » « less
  4. Abstract

    Research about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.

     
    more » « less
  5. Redirected and amplified head movements have the potential to provide more natural interaction with virtual environments (VEs) than using controller-based input, which causes large discrepancies between visual and vestibular self-motion cues and leads to increased VR sickness. However, such amplified head movements may also exacerbate VR sickness symptoms over no amplification. Several general methods have been introduced to reduce VR sickness for controller-based input inside a VE, including a popular vignetting method that gradually reduces the field of view. In this paper, we investigate the use of vignetting to reduce VR sickness when using amplified head rotations instead of controllerbased input. We also investigate whether the induced VR sickness is a result of the user’s head acceleration or velocity by introducing two different modes of vignetting, one triggered by acceleration and the other by velocity. Our dependent measures were pre and post VR sickness questionnaires as well as estimated discomfort levels that were assessed each minute of the experiment. Our results show interesting effects between a baseline condition without vignetting, as well as the two vignetting methods, generally indicating that the vignetting methods did not succeed in reducing VR sickness for most of the participants and, instead, lead to a significant increase. We discuss the results and potential explanations of our findings. 
    more » « less