skip to main content

Title: Systems Thinking to Protect Coral Reefs: A Case Study Rooted in Community Partnerships
Environmental impacts associated with inefficient and ineffective land-based wastewater treatment have direct implications for regional governments and local communities in the Caribbean due to the links between environmental quality of coastal areas (e.g. coral reefs) and socioeconomic activities (e.g. tourism, commercial fishing, cultural heritage, recreation). In Placencia, Belize an interdisciplinary team of students and community members investigate the tradeoffs that exists amid a food-energy-water systems (FEWS) case study, in order to co-create sustainable solutions. This work partners with Fragments of Hope and EcoFriendly Solutions to take a systems approach to consider the dynamic and interrelated factors and leverage points (e.g. technological, regulatory, organizational, social, economic) related to the adoption and sustainability of wastewater innovations at cayes where coral restoration work is occurring. This technology can improve water quality issues in sensitive marine ecosystems and productively reuse water and nutrients to grow food. Results show that marketing and technical strategies contributed to incremental improvements in the system's sustainability, while changing community behaviors (i.e. reporting the correct number of users and reclaiming resources – water and nutrients – for food production), was the more significant way to influence the sustainable management of the wastewater resources and to protect the coastal environment. The work is situated more » within the deeper context of graduate student research and training where the University of South Florida is partnering with the Caribbean Community Climate Change Center to raise up a new generation of globally competent science, technology, engineering, and math (STEM) students. These students develop interdisciplinary and 21st century skills, as well as technical and methodological flexibility to address the complexity inherent in “wicked problems”. To accomplish this, the partners provide resources and training for interdisciplinary and systems-based teaching and research that results in original and impactful solutions developed alongside community members to locally and globally focused challenges. « less
Authors:
; ; ;
Award ID(s):
1735320 1243510
Publication Date:
NSF-PAR ID:
10111354
Journal Name:
12 th Natural Resource Management & Research Symposium “BELIZE, ‘THROUGH THE BOTTLENECK’”
Sponsoring Org:
National Science Foundation
More Like this
  1. Meeting the UN Sustainable Development Goals (SDGs) requires innovations in education to build key competencies in all learners. Learning objectives for SDGs identified by UNESCO like the “Integrated problem-solving competency,” if integrated properly with high school curriculum, can contribute sustainable development solutions for Belize. Additionally, the 3rd international conference of SIDS http://www.sids2014.org) under the theme, “The sustainable development of small island developing states through genuine and durable partnerships,” stressed investment in education and training, including through partnerships with migrants and diaspora communities, with “concrete, focused, forward-looking and action oriented programmes.” The Sagicor Visionaries Challenge, a sustainability challenge launched by the Caribbean Examinations Council (CXC), the Caribbean Science Foundation, and the Ministries of Education across 12 Caribbean countries in 2012, represented an example of such a partnership that fostered many key competencies now needed for meeting the SDGs. It asked secondary school students in the Caribbean to identify a challenge facing their school and or community, propose a sustainable and innovative solution, and show how that solution uses Science Technology Engineering and Mathematics (STEM) as well as got the support of the school community. For its inaugural year, teacher and student sensitization workshops were organized in each country. Teachers supervised themore »student projects with support from mentors who were either local or virtual, including many members of the Caribbean diaspora. 175 projects entered the competition, representing 900 students ranging in age from 11 to 19. Experience from the inaugural year, which saw Belize’s Bishop Martin Secondary emerge the regional challenge winner, demonstrated interest by young people of the Caribbean in many of the themes listed in the SIDS outcomes like climate change, sustainable energy, disaster risk reduction, sustainable oceans and seas, food security and nutrition, water and sanitation, sustainable transportation, sustainable consumption and production, and health and non-communicable diseases. Reflection on student projects from Belize from the 2013 challenge, as well as current examples of teacher led inquiry-based projects for CXC’s School Based Assessments (SBAs), offer multiple opportunities for ensuring reef to ridge sustainable development in Belize and the rest of the Caribbean.« less
  2. Unoccupied Aerial Vehicles (UAVs), or drone technologies, with their high spatial resolution, temporal flexibility, and ability to repeat photogrammetry, afford a significant advancement in other remote sensing approaches for coastal mapping, habitat monitoring, and environmental management. However, geographical drone mapping and in situ fieldwork often come with a steep learning curve requiring a background in drone operations, Geographic Information Systems (GIS), remote sensing and related analytical techniques. Such a learning curve can be an obstacle for field implementation for researchers, community organizations and citizen scientists wishing to include introductory drone operations into their work. In this study, we develop a comprehensive drone training program for research partners and community members to use cost-effective, consumer-quality drones to engage in introductory drone mapping of coastal seagrass monitoring sites along the west coast of North America. As a first step toward a longer-term Public Participation GIS process in the study area, the training program includes lessons for beginner drone users related to flying drones, autonomous route planning and mapping, field safety, GIS analysis, image correction and processing, and Federal Aviation Administration (FAA) certification and regulations. Training our research partners and students, who are in most cases novice users, is the first step inmore »a larger process to increase participation in a broader project for seagrass monitoring in our case study. While our training program originated in the United States, we discuss our experiences for research partners and communities around the globe to become more confident in introductory drone operations for basic science. In particular, our work targets novice users without a strong background in geographic research or remote sensing. Such training provides technical guidance on the implementation of a drone mapping program for coastal research, and synthesizes our approaches to provide broad guidance for using drones in support of a developing Public Participation GIS process.« less
  3. A Novel Community Engaged System Thinking Approach to Controlling Nutrient Pollution in the Belize Cayes Nutrient pollution (anthropogenic discharge of nitrogen and phosphate) is a major concern in many parts of the world. Excess nutrient discharge into nutrient limited waters can cause toxic algal blooms that lead to hypoxic zones, fish die-offs, and overgrowth on reefs. This can lead to coral reefs being more vulnerable to global warming and ocean acidification. For coastal communities that depend of fishing and tourism for their livelihood, and for reefs to protect coastlines, these effects can be devastating. A major source of nutrient input into the aquatic environment is poorly treated wastewater from Onsite Wastewater Treatment Systems (OWTS). When properly sited, built, and maintained conventional OWTS are great for removing fats, grease, biological oxygen demand (BOD), and total suspended solids (TSS), but they are rarely designed for nutrient removal and commonly have high nutrient levels in their effluent. This study investigates the factors that influence the performance of OWTS, the Caribbean region’s most common type of treatment technology, in the Belizean Cayes where salt water flushing is common. Using mass-balance-based models for existing and proposed OWTS to predict the system’s performance under various conditions,more »along with OWTS’ owner, maintainer, and user input, a novel community engaged system thinking approach to controlling nutrient pollution will be developed. Key model performance metrics are concentrations of nitrogen species, BOD, and TSS in the effluent. To demonstrate the model’s utility, a sensitivity analysis was performed for case studies in Belize, estimating the impact on nutrient removal efficiency when changes are made to variables such as number of daily users, idle periods, tank number and volume, oxygen concentration and recirculation. For the systems considered here, strategies such as aeration, increased biodigester tank size, addition of aerobic and anoxic biodigesters, recirculation, addition of a carbon source, ion exchange media is predicted to decrease the effluent nitrogen concentration, and integration of vegetation for nutrient uptake both on land and in the nearshore environment. In a previous case, the addition of an aerator was predicted to decrease the effluent ammonium concentration by 13%, whereas increasing the biodigester tank size would only decrease the effluent ammonium concentration by ~7%. Model results are shared with system manufacturers and operators to prioritize possible modifications, thereby optimizing the use of finite resources, namely time and money, for costly trial-and-error improvement efforts.« less
  4. Engineers are increasingly called on to develop sustainable solutions to complex problems. Within engineering, however, economic and environmental aspects of sustainability are often prioritized over social ones. This paper describes how efficiency and sustainability were conceptualized and interrelated by students in a newly developed second-year undergraduate engineering course, An Integrated Approach to Energy. This course took a sociotechnical approach and emphasized modern energy concepts (e.g., renewable energy), current issues (e.g., climate change), and local and personal contexts (e.g., connecting to students’ lived experiences). Analyses of student work and semi-structured interview data were used to explore how students conceptualized sustainability and efficiency. We found that in this cohort (n = 17) students often approached sustainability through a lens of efficiency, believing that if economic and environmental resources were prioritized and optimized, sustainability would be achieved. By exploring sustainability and efficiency together, we examined how dominant discourses that privilege technical over social aspects in engineering can be replicated within an energy context.
  5. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunitiesmore »to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed.« less