This paper addresses the complete area coverage problem of a known environment by multiple-robots. Complete area coverage is the problem of moving an end-effector over all available space while avoiding existing obstacles. In such tasks, using multiple robots can increase the efficiency of the area coverage in terms of minimizing the operational time and increase the robustness in the face of robot attrition. Unfortunately, the problem of finding an optimal solution for such an area coverage problem with multiple robots is known to be NP-complete. In this paper we present two approximation heuristics for solving the multi-robot coverage problem. The first solution presented is a direct extension of an efficient single robot area coverage algorithm, based on an exact cellular decomposition. The second algorithm is a greedy approach that divides the area into equal regions and applies an efficient single-robot coverage algorithm to each region. We present experimental results for two algorithms. Results indicate that our approaches provide good coverage distribution between robots and minimize the workload per robot, meanwhile ensuring complete coverage of the area.
more »
« less
Efficient Algorithms for Optimal Perimeter Guarding
We investigate the problem of optimally assigning a large number of robots (or other types of autonomous agents) to guard the perimeters of closed 2D regions, where the perimeter of each region to be guarded may contain multiple disjoint polygonal chains. Each robot is responsible for guarding a subset of a perimeter and any point on a perimeter must be guarded by some robot. In allocating the robots, the main objective is to minimize the maximum 1D distance to be covered by any robot along the boundary of the regions. For this optimization problem which we call optimal perimeter guarding (OPG), thorough structural analysis is performed, which is then exploited to develop fast exact algorithms that run in guaranteed low polynomial time. In addition to formal analysis and proofs, experimental evaluations and simulations are performed that further validate the correctness and effectiveness of our algorithmic results.
more »
« less
- PAR ID:
- 10111592
- Date Published:
- Journal Name:
- Robotics: science and systems
- ISSN:
- 2330-7668
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider multi-robot service scenarios, where tasks appear at any time and in any location of the working area. A solution to such a service task problem requires finding a suitable task assignment and a collision-free trajectory for each robot of a multi-robot team. In cluttered environments, such as indoor spaces with hallways, those two problems are tightly coupled. We propose a decentralized algorithm for simultaneously solving both problems, called Hierarchical Task Assignment and Path Finding (HTAPF). HTAPF extends a previous bio-inspired Multi-Robot Task Allocation (MRTA) framework [1]. In this work, task allocation is performed on an arbitrarily deep hierarchy of work areas and is tightly coupled with a fully distributed version of the priority-based planning paradigm [12], using only broadcast communication. Specifically, priorities are assigned implicitly by the order in which data is received from nearby robots. No token passing procedure or specific schedule is in place ensuring robust execution also in the presence of limited probabilistic communication and robot failures.more » « less
-
We introduce and study a new search-type problem with ( 𝑛+1 )-robots on a disk. The searchers (robots) all start from the center of the disk, have unit speed, and can communicate wirelessly. The goal is for a distinguished robot (the queen) to reach and evacuate from an exit that is hidden on the perimeter of the disk in as little time as possible. The remaining n robots (servants) are there to facilitate the queen’s objective and are not required to reach the hidden exit. We provide upper and lower bounds for the time required to evacuate the queen. Namely, we propose an algorithm specifying the trajectories of the robots which guarantees evacuation of the queen in time always better than 2+4(\sqrt{2}-1)\pi/n for 𝑛≥4 servants. We also demonstrate that for 𝑛≥4 servants the queen cannot be evacuated in time less than 2 + \pi/n + 2/n^2.more » « less
-
One potential application of multirobot systems is collective transport, a task in which multiple robots collaboratively move a payload that is too large or heavy for a single robot. In this review, we highlight a variety of control strategies for collective transport that have been developed over the past three decades. We characterize the problem scenarios that have been addressed in terms of the control objective, the robot platform and its interaction with the payload, and the robots’ capabilities and information about the payload and environment. We categorize the control strategies according to whether their sensing, computation, and communication functions are performed by a centralized supervisor or specialized robot or autonomously by the robots. We provide an overview of progress toward control strategies that can be implemented on robots with expanded autonomous functionality in uncertain environments using limited information, and we suggest directions for future work on developing such controllers.more » « less
-
We consider the problem of multi-robot sensor coverage, which deals with deploying a multi-robot team in an environment and optimizing the sensing quality of the overall environment. As real-world environments involve a variety of sensory information, and individual robots are limited in their available number of sensors, successful multi-robot sensor coverage requires the deployment of robots in such a way that each individual team member’s sensing quality is maximized. Additionally, because individual robots have varying complements of sensors and both robots and sensors can fail, robots must be able to adapt and adjust how they value each sensing capability in order to obtain the most complete view of the environment, even through changes in team composition. We introduce a novel formulation for sensor coverage by multi-robot teams with heterogeneous sensing capabilities that maximizes each robot's sensing quality, balancing the varying sensing capabilities of individual robots based on the overall team composition. We propose a solution based on regularized optimization that uses sparsity-inducing terms to ensure a robot team focuses on all possible event types, and which we show is proven to converge to the optimal solution. Through extensive simulation, we show that our approach is able to effectively deploy a multi-robot team to maximize the sensing quality of an environment, responding to failures in the multi-robot team more robustly than non-adaptive approaches.more » « less