skip to main content


Title: Effective Heuristics for Multi-Robot Path Planning in Warehouse Environments
In this preliminary study, we propose a new centralized decoupled algorithm for solving one-shot and dynamic optimal multi-robot path planning problems in a grid- based setting mainly targeting warehouse like environments. In particular, we exploit two novel and effective heuristics: path diversification and optimal sub-problem solution databases. Preliminary evaluation efforts demonstrate that our method achieves promising scalability and good solution optimality.  more » « less
Award ID(s):
1734419 1845888
NSF-PAR ID:
10111593
Author(s) / Creator(s):
;
Date Published:
Journal Name:
THE 2ND IEEE INTERNATIONAL SYMPOSIUM ON MULTI-ROBOT AND MULTI-AGENT SYSTEMS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In multi-objective search, edges are annotated with cost vectors consisting of multiple cost components. A path dominates another path with the same start and goal vertices iff the component-wise sum of the cost vectors of the edges of the former path is 'less than' the component-wise sum of the cost vectors of the edges of the latter path. The Pareto-optimal solution set is the set of all undominated paths from a given start vertex to a given goal vertex. Its size can be exponential in the size of the graph being searched, which makes multi-objective search time-consuming. In this paper, we therefore study how to find an approximate Pareto-optimal solution set for a user-provided vector of approximation factors. The size of such a solution set can be significantly smaller than the size of the Pareto-optimal solution set, which enables the design of approximate multi-objective search algorithms that are efficient and produce small solution sets. We present such an algorithm in this paper, called A*pex. A*pex builds on PPA*, a state-of-the-art approximate bi-objective search algorithm (where there are only two cost components) but (1) makes PPA* more efficient for bi-objective search and (2) generalizes it to multi-objective search for any number of cost components. We first analyze the correctness of A*pex and then experimentally demonstrate its efficiency advantage over existing approximate algorithms for bi- and tri-objective search. 
    more » « less
  2. Summary

    Path planning is a fundamental and critical task in many robotic applications. For energy‐constrained robot platforms, path planning solutions are desired with minimum time arrivals and minimal energy consumption. Uncertain environments, such as wind conditions, pose challenges to the design of effective minimum time‐energy path planning solutions. In this article, we develop a minimum time‐energy path planning solution in continuous state and control input spaces using integral reinforcement learning (IRL). To provide a baseline solution for the performance evaluation of the proposed solution, we first develop a theoretical analysis for the minimum time‐energy path planning problem in a known environment using the Pontryagin's minimum principle. We then provide an online adaptive solution in an unknown environment using IRL. This is done through transforming the minimum time‐energy problem to an approximate minimum time‐energy problem and then developing an IRL‐based optimal control strategy. Convergence of the IRL‐based optimal control strategy is proven. Simulation studies are developed to compare the theoretical analysis and the proposed IRL‐based algorithm.

     
    more » « less
  3. Integer programming (IP) has proven to be highly effective in solving many path-based optimization problems in robotics. However, the applications of IP are generally done in an ad-hoc, problem-specific manner. In this work, after examined a wide range of path-based optimization problems, we describe an IP solution methodology for these problems that is both easy to apply (in two simple steps) and high-performance in terms of the computation time and the achieved optimal- ity. We demonstrate the generality of our approach through the application to three challenging path-based optimization problems: multi-robot path planning (MPP), minimum constraint removal (MCR), and reward collection problems (RCPs). Associ- ated experiments show that the approach can efficiently produce (near-)optimal solutions for problems with large state spaces, complex constraints, and complicated objective functions. In conjunction with the proposition of the IP methodology, we introduce two new and practical robotics problems: multi-robot minimum constraint removal (MMCR) and multi-robot path planning (MPP) with partial solutions, which can be quickly and effectively solved using our proposed IP solution pipeline. 
    more » « less
  4. We present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. The follower must solve an optimization problem that has been previously perturbed by means of a series of attacking actions led by the attacker. These attacking actions aim at augmenting the cost of the decision variables of the follower’s optimization problem. The objective, from the attacker’s viewpoint, is that of choosing an attacking strategy that reduces as much as possible the quality of the optimal solution attainable by the follower. The progressive approximation mechanism consists of the iterative solution of an interdiction problem in which the attacker actions are restricted to a subset of the whole solution space and a pricing subproblem invoked with the objective of proving the optimality of the attacking strategy. This scheme is especially useful when the optimal solutions to the follower’s subproblem intersect with the decision space of the attacker only in a small number of decision variables. In such cases, the progressive approximation method can solve interdiction games otherwise intractable for classical methods. We illustrate the efficiency of our approach on the shortest path, 0-1 knapsack and facility location interdiction games. Summary of Contribution: In this article, we present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. We exploit the discrete nature of this interdiction game to design an effective algorithmic framework that improves the performance of general-purpose solvers. Our algorithm combines elements from mathematical programming and computer science, including a metaheuristic algorithm, a binary search procedure, a cutting-planes algorithm, and supervalid inequalities. Although we illustrate our results on three specific problems (shortest path, 0-1 knapsack, and facility location), our algorithmic framework can be extended to a broader class of interdiction problems. 
    more » « less
  5. In this paper, we propose the greedy smallest-cost-rate path first (GRASP) algorithm to route power from sources to loads in a digital microgrid (DMG). Routing of power from distributed energy resources (DERs) to loads of a DMG comprises matching loads to DERs and the selection of the smallest-cost-rate path from a load to its supplying DERs. In such a microgrid, one DER may supply power to one or many loads, and one or many DERs may supply the power requested by a load. Because the optimal method is NP-hard, GRASP addresses this high complexity by using heuristics to match sources and loads and to select the smallest-cost-rate paths in the DMG. We compare the cost achieved by GRASP and an optimal method based on integer linear programming on different IEEE test feeders and other test networks. The comparison shows the trade-offs between lowering complexity and achieving optimal-cost paths. The results show that the cost incurred by GRASP approaches that of the optimal solution by small margins. In the adopted networks, GRASP trades its lower complexity for up to 18% higher costs than those achieved by the optimal solution. 
    more » « less