- Award ID(s):
- 1740858
- NSF-PAR ID:
- 10111676
- Date Published:
- Journal Name:
- Nonlinear Processes in Geophysics Discussions
- ISSN:
- 2198-5634
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. We consider a stochastic differential equation modelfor Earth's axial magnetic dipole field.Our goal is to estimate the model's parametersusing diverse and independent data sources that had previously been treated separately,so that the model is a valid representation of an expanded paleomagnetic recordon kyr to Myr timescales.We formulate the estimation problem within the Bayesian frameworkand define a feature-based posterior distributionthat describes probabilities of model parameters givena set of features derived from the data.Numerically, we use Markov chain Monte Carlo (MCMC)to obtain a sample-based representation of the posterior distribution.The Bayesian problem formulation and its MCMC solutionallow us to study the model's limitations and remaining posterior uncertainties.Another important aspect of our overall approach is thatit reveals inconsistencies between model and data or within the various data sets.Identifying these shortcomings is a first and necessary step towards building more sophisticated models or towards resolving inconsistencies within the data.The stochastic model we derive representsselected aspects of the long-term behavior of the geomagnetic dipole fieldwith limitations and errors that are well defined.We believe that such a model is useful (besides its limitations) for hypothesis testing and give a few examples of how the model can be used in this context.more » « less
-
SUMMARY It is well known that the axial dipole part of Earth’s magnetic field reverses polarity, so that the magnetic North Pole becomes the South Pole and vice versa. The timing of reversals is well documented for the past 160 Myr, but the conditions that lead to a reversal are still not well understood. It is not known if there are reliable ‘precursors’ of reversals (events that indicate that a reversal is upcoming) or what they might be. We investigate if machine learning (ML) techniques can reliably identify precursors of reversals based on time-series of the axial magnetic dipole field. The basic idea is to train a classifier using segments of time-series of the axial magnetic dipole. This training step requires modification of standard ML techniques to account for the fact that we are interested in rare events—a reversal is unusual, while a non-reversing field is the norm. Without our tweak, the ML classifiers lead to useless predictions. Perhaps even more importantly, the usable observational record is limited to 0–2 Ma and contains only five reversals, necessitating that we determine if the data are even sufficient to reliably train and validate an ML algorithm. To answer these questions we use several ML classifiers (linear/non-linear support vector machines and long short-term memory networks), invoke a hierarchy of numerical models (from simplified models to 3-D geodynamo simulations), and two palaeomagnetic reconstructions (PADM2M and Sint-2000). The performance of the ML classifiers varies across the models and the observational record and we provide evidence that this is not an artefact of the numerics, but rather reflects how ‘predictable’ a model or observational record is. Studying models of Earth’s magnetic field via ML classifiers thus can help with identifying shortcomings or advantages of the various models. For Earth’s magnetic field, we conclude that the ability of ML to identify precursors of reversals is limited, largely due to the small amount and low frequency resolution of data, which makes training and subsequent validation nearly impossible. Put simply: the ML techniques we tried are not currently capable of reliably identifying an axial dipole moment (ADM) precursor for geomagnetic reversals. This does not necessarily imply that such a precursor does not exist, and improvements in temporal resolution and length of ADM records may well offer better prospects in the future.
-
SUMMARY Earth’s internal magnetic field is dominated by the contribution of the axial dipole whose temporal variations are wide ranging and reflect characteristic timescales associated with geomagnetic reversals and large scale palaeosecular variation, ranging down to decadal and subannual field changes inferred from direct observations. We present a new empirical power spectrum for the axial dipole moment based on composite magnetic records of temporal variations in the axial dipole field that span the frequency range 0.1 to 5 × 105 Myr–1 (periods from 10 million to 2 yr). The new spectrum is used to build a stochastic representation for these time variations, based on an order 3 autoregressive (AR) process and placed in the context of earlier stochastic modelling studies. The AR parameter estimates depend on the frequency of transitions in the spectral regime and may be influenced by Ohmic diffusion, advection and torsional oscillations in Earth’s core. In several frequency ranges across the interval 200–5000 Myr–1(5000 to 200 yr periods) the empirical power spectrum lies above the AR3 model and may be influenced by Magneto–Coriolis (MC) waves in Earth’s core. The spectral shape and parameter estimates provide a potentially useful guide for developing assessments of whether numerical dynamo simulations meet criteria for being considered Earth like.more » « less
-
Abstract. Many applications in science require that computational models and data becombined. In a Bayesian framework, this is usually done by defininglikelihoods based on the mismatch of model outputs and data. However,matching model outputs and data in this way can be unnecessary or impossible.For example, using large amounts of steady state data is unnecessary becausethese data are redundant. It is numerically difficult to assimilate data inchaotic systems. It is often impossible to assimilate data of a complexsystem into a low-dimensional model. As a specific example, consider alow-dimensional stochastic model for the dipole of the Earth's magneticfield, while other field components are ignored in the model. The aboveissues can be addressed by selecting features of the data, and defininglikelihoods based on the features, rather than by the usual mismatch of modeloutput and data. Our goal is to contribute to a fundamental understanding ofsuch a feature-based approach that allows us to assimilate selected aspectsof data into models. We also explain how the feature-based approach can beinterpreted as a method for reducing an effective dimension and derive newnoise models, based on perturbed observations, that lead to computationallyefficient solutions. Numerical implementations of our ideas are illustratedin four examples.
-
Abstract The infrared solar spectrum contains a wealth of physical data about the Sun and is being explored using modern detectors and technology with new ground-based solar telescopes. One such instrument will be the ground-based Cryogenic Near-IR Spectro-Polarimeter of the Daniel K. Inouye Solar Telescope (DKIST), which will be capable of sensitive imaging of the faint infrared solar coronal spectra with full Stokes I, Q, U, and V polarization states. Highly ionized magnetic dipole emission lines have been observed in galaxies and the solar corona. Quantifying the accuracy of spectral inversion procedures requires a precise spectroscopic calibration of observations. A careful interpretation of the spectra around prominent magnetic dipole lines is essential for deriving physical parameters and particularly for quantifying the off-limb solar coronal observations from DKIST. In this work, we aim to provide an analysis of the spectral regions around the infrared coronal emission lines of Fe
xiii 1074.68 nm, Fexiii 1079.79 nm, Six 1430.10 nm, and Siix 3934.34 nm, aligning with the goal of identifying solar photospheric and telluric lines that will help facilitate production of reliable inversions and data products from four sets of solar coronal observations. The outputs can be integrated in processing pipelines to produce level 2 science-ready data.