skip to main content


Title: A Pool Strategy of Microgrid in Power Distribution Electricity Market
This paper discusses a market-based pool strategy for a microgrid (MG) to optimally trade electric power in the distribution electricity market (DEM). The increasing penetration levels of distributed energy resources (DERs) and MGs in distribution system (DS) stress distribution system operator (DSO) and require higher levels of coordinated control strategies. The distribution system operator has limited visibility and control over such distributed resources. To reduce the complexity of the system and improve the efficiency of the electricity market operation, we propose a decentralized pool strategy for an MG to integrate with a distribution system through a market mechanism. A market-based interactions procedure between MGs and DS is developed for MGs as price-makers to find an optimal bidding/offering strategy efficiently. To achieve a market equilibrium among all entities, we initially cast this problem as a bi-level programming problem, in which the upper level is an MG optimal scheduling problem and the lower level presents a DEM clearing mechanism. The proposed bi-level model is converted to a single mix-integer model which is easier to solve. Uncertainties associated with MG's rivals' offers and demands' bids are considered in this problem. The solution results from a modified IEEE 33-Bus distribution system are presented and discussed. Finally, some conclusions are drawn and examined.  more » « less
Award ID(s):
1851602
NSF-PAR ID:
10112447
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Peer-to-peer energy trading within microgrid (MG) communities emerges as a key enabler of the future transactive distribution system and the transactive electricity market. Energy trading within MGs refers to the idea that the surplus energy of one MG can be used to satisfy the demand of another MG or a group of MGs that form an MG community. These communities can be dynamically established through time, based on the variations of demand and supply of the interconnected MGs. In many modern MGs, Electric Vehicles (EVs) have been considered as a viable storage option due to their ease of use (plug-and-play) and their growing adoption rates by drivers. On the other hand, the dynamic nature of EVs escalates the uncertainty in the transactive distribution system. In this paper, we study the problem of energy trading among MGs and EVs with the aim of power loss minimization where there is uncertainty. We propose a novel Bayesian Coalition Game (BCG) based algorithm, which allows the MGs and EVs to reduce the overall power loss by allowing them to form coalitions intelligently. The proposed scheme is compared with a conventional coalitional game theory-based approach and a Q-learning based approach. Our results show significant improvement over other compared techniques. 
    more » « less
  2. The classic Vickrey-Clarke-Groves (VCG) mech-anism ensures incentive compatibility, i.e., that truth-telling of all agents is a dominant strategy, for a static one-shot game. However, in a dynamic environment that unfolds over time, the agents’ intertemporal payoffs depend on the expected future controls and payments, and a direct extension of the VCG mechanism is not sufficient to guarantee incentive compati-bility. In fact, it does not appear to be feasible to construct mechanisms that ensure the dominance of dynamic truth-telling for agents comprised of general stochastic dynamic systems. The contribution of this paper is to show that such a dynamic stochastic extension does exist for the special case of Linear-Quadratic-Gaussian (LQG) agents with a careful construction of a sequence of layered payments over time. We propose a layered version of a modified VCG mechanism for payments that decouples the intertemporal effect of current bids on future payoffs, and prove that truth-telling of dynamic states forms a dominant strategy if system parameters are known and agents are rational. An important example of a problem needing such optimal dynamic coordination of stochastic agents arises in power systems where an Independent System Operator (ISO) has to ensure balance of generation and consumption at all time instants, while ensuring social optimality (maximization of the sum of the utilities of all agents). Addressing strategic behavior is critical as the price-taking assumption on market participants may not hold in an electricity market. Agents, can lie or otherwise game the bidding system. The challenge is to determine a bidding scheme between all agents and the ISO that maximizes social welfare, while taking into account the stochastic dynamic models of agents, since renewable energy resources such as solar/wind are stochastic and dynamic in nature, as are consumptions by loads which are influenced by factors such as local temperatures and thermal inertias of facilities. 
    more » « less
  3. Reliability of the power grid can be improved by the use of microgrids (MGs) concept, which regulates the voltage and frequency at the point of common coupling (PCC) during normal and/or faulty conditions. Droop characteristics based hierarchical control strategies are commonly used in MGs, where power converters can operate in parallel. However, the need of multiple control loops not only adds complexity to the controller design, but also reduces the dynamic response of the system. In the future power system, grid-tied converters with fast dynamic response are desired to handle the uncertainties induced by high penetration of distributed energy resources. Therefore, this paper presents a novel model predictive control to ensure fast dynamic response of high power three-level converters in stand-alone operating mode as well as grid-tied operating mode. The proposed controller is applied to a MG which consists of a solar inverter connected in parallel with an energy storage system to the PCC, where a local load is tied. Both simulation and experimental results are presented to demonstrate robustness and the high dynamic performance of the proposed controller under rapidly changing atmospheric conditions and different grid operating modes. 
    more » « less
  4. Abstract

    The mass deployment of distributed energy resources (DERs) to achieve clean energy objectives has become a major goal across several states in the U.S. However, the viability and reality of achieving these goals in dense urban areas, such as New York City, are challenged by several ‘Techno‐Economic’ barriers associated with available land space and the number of AC/direct current (DC) conversion stages that requires multiple electrical balance of plant (BOP) equipment for pairing/interconnecting these resources to the grid. The fundamental issue of interconnection is addressed by assessing the use of a common DC bus in a one‐of‐a‐kind configuration (to pair grid‐connected energy storage, photovoltaic, and electric vehicle chargers (EVC) systems) and reduce the number of BOP equipment needed for deployment. Building on similar work that has touched on distribution‐level DC interconnection, this paper will also address the intricacies of interconnecting third‐party and Utility DERs to a DC‐based point of common coupling. It will examine the requisite site controller configuration (control architecture) and requirements to coordinate the energy storage system's use between managing Utility and Third‐Party EVC demand while prioritising dispatch. The result shows that the DC‐coupled system is technologically feasible and hierarchical control architecture is recommended to maintain stability during various use cases proposed. This will inform a lab demonstration of this system that aims to test DC integration of the DERs with recommendations for the microgrid (MG) controllers and reduction in the BOP equipment. These learnings will then be applied to practical grid‐scale deployment of the systems at Con Edison's Cedar Street Substation. This system, if proven successful, has the potential to change the way community distributed generation and MGs are interconnected to the Utility System.

     
    more » « less
  5. Power grids are evolving at an unprecedented pace due to the rapid growth of distributed energy resources (DER) in communities. These resources are very different from traditional power sources as they are located closer to loads and thus can significantly reduce transmission losses and carbon emissions. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy requirements like privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. In this paper, we describe our platform, called TRANSAX, which enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy. We also provide an analysis of how much trading efficiency is lost. Trading efficiency is improved through the problem formulation which accounts for temporal flexibility, and system efficiency is improved using a hybrid-solver architecture. Finally, we describe a testbed to run experiments and demonstrate its performance using simulation results. 
    more » « less