- Award ID(s):
- 1747757
- PAR ID:
- 10127789
- Date Published:
- Journal Name:
- Fast and Secure Operation of VSI based DERs using Model Predictive Droop Control
- Page Range / eLocation ID:
- 1035 to 1042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Distributed power generation plants with combined photovoltaic (PV) systems and integrated energy storage for grid-connected applications have seen an increase in research interest in recent years. However, the combination of multiple energy sources requires numerous DC-DC converters and thus becomes more complex. To address this issue, a multiport bidirectional DC-DC LLC resonant converter for grid connected applications is presented in this research. In order to minimize the control complexity of the proposed system, a zone based controller approach with an integrated modified maximum power point tracking (MMPPT) method, which is based on the incremental conductance method, is also developed. This proposed controller is able to regulate the converter voltage and power flow while either delivering or taking power from the utility grid. The converter presented in this study contains a bidirectional buck-boost converter and an LLC resonant converter in addition to a voltage source grid-tied inverter which are interfacing the PV, the battery and the utility. Extensive simulation analyses through MATLAB/Simulink have proved the operations of the proposed topology.more » « less
-
As technology advances and cities become more innovative, the need to harvest energy to power intelligent devices at remote locations, such as wireless sensors, is increasing. This paper focuses on studying and simulating an energy management system (EMS) for energy harvesting with a battery and a supercapacitor for low power applications. Lithium-ion batteries are the primary energy storage source for low power applications due to their high energy density and efficiency. On the other hand, the supercapacitors excel in fast charge and discharge. Furthermore, supercapacitors tolerate high currents due to their low equivalent series resistance (ESR). The supercapacitor in the system increases the time response of the power delivery to the load, and it also absorbs the high currents in the system. Moreover, the supercapacitor covers short-time load demand due to the fluctuation of the renewable source. The EMS monitors the proposed system to maintain power to the load either from the renewable source or the energy storage. The power flow of the energy storage is controlled via DC-DC bidirectional converters. The lithium-ion battery is charged via a constant current (CC) using a sliding mode controller (SMC) and a constant voltage (CV) via a typical PI controller. The response of the SMC current controller is compared with PI and Fuzzy current controller. Furthermore, the performance of a system having and not having a supercapacitor is compared. Finally, MATLAB modeling system simulation and experimental implementation results are analyzed and presented.more » « less
-
Abstract This paper presents the genetic algorithm (GA) and particle swarm optimization (PSO) based frequency regulation for a wind‐based microgrid (MG) using reactive power balance loop. MG, operating from squirrel cage induction generator (SCIG), is employed for exporting the electrical power from wind turbines, and it needs reactive power which may be imported from the grid. Additional reactive power is also required from the grid for the load, directly coupled with such a distributed generator (DG) plant. However, guidelines issued by electric authorities encourage MGs to arrange their own reactive power because such reactive power procurement is defined as a local area problem for power system studies. Despite the higher cost of compensation, static synchronous compensator (STATCOM) is a fast‐acting FACTs device for attending to these reactive power mismatches. Reactive power control can be achieved by controlling reactive current through the STATCOM. This can be achieved with modification in current controller scheme of STATCOM. STATCOM current controller is designed with reactive power load balance for the proposed microgrid in this paper. Further, gain values of the PI controller, required in the STATCOM model, are selected first with classical methods. In this classical method, iterative procedures which are based on integral square error (ISE), integral absolute error (IAE), and integral square of time error (ISTE) criteria are developed using MATLAB programs. System performances are further investigated with GA and PSO based control techniques and their acceptability over classical methods is diagnosed. Results in terms of converter frequency deviation show how the frequency remains under the operating boundaries as allowed by IEEE standards 1159:1995 and 1250:2011 for integrating renewable‐based microgrid with grid. Real and reactive power management and load current total harmonic distortions verify the STATCOM performance in MG. The results are further validated with the help of recent papers in which frequency regulation is investigated for almost similar power system models. The compendium for this work is as following: (i) modelling of wind generator‐based microgrid using MATLAB simulink library, (ii) designing of STATCOM current controller with PI controller, (iii) gain constants estimation using classical, GA and PSO algorithm through a developed m codes and their interfacing with proposed simulink model, (v) dynamic frequency responses for proposed grid connected microgrid during starting and load perturbations, (vi) verification of system performance with the help of obtained real and reactive power management between STATCOM and grid, and (vii) validation of results with available literature.
-
In this work, we investigate grid-forming control for power systems containing three-phase and single-phase converters connected to unbalanced distribution and transmission networks, investigate self-balancing between single-phase converters, and propose a novel balancing feedback for grid-forming control that explicitly allows to trade-off unbalances in voltage and power. We develop a quasi-steady-state power network model that allows to analyze the interactions between three-phase and single-phase power converters across transmission, distribution, and standard transformer interconnections. We first investigate conditions under which this general network admits a well-posed kron-reduced quasi-steady-state network model. Our main contribution leverages this reduced-order model to develop analytical conditions for stability of the overall network with grid-forming three-phase and single-phase converters connected through standard transformer interconnections. Specifically, we provide conditions on the network topology under which (i) single-phase converters autonomously self-synchronize to a phase-balanced operating point and (ii) single-phase converters phase-balance through synchronization with three-phase converters. Moreover, we establish that the conditions can be relaxed if a phase-balancing feedback control is used. Finally, case studies combining detailed models of transmission systems (i.e., IEEE 9-bus) and distribution systems (i.e., IEEE 13-bus) are used to illustrate the results for (i) a power system containing a mix of transmission and distribution connected converters and, (ii) a power system solely using distribution-connected converters at the grid edge.more » « less
-
This paper proposes a control scheme that prevents the adverse dynamic interactions between the heterogeneously controlled grid-forming inverters (GFMI) in power electronics dominated grid (PEDG) towards a resilient self-driving grid. The primary controller of GFMIs in a grid cluster can vary based on their manufacturers such as virtual synchronous generation, droop control, power synchronization control, etc. Therefore, this can introduce heterogeneity among the network of GFMIs in PEDG. Resultantly, during the interconnection of GFMIs that are based on heterogenous primary controller poses various synchronization and dynamic interaction challenges in PEDG. For instance, severe fluctuations in frequency and voltage, high ROCOF, unintended reactive power circulation that poses a threat on the overall transient stability of the PEDG. Therefore, to mitigate these adverse dynamic interactions among the heterogeneously controlled GFMIs, a force enclaved homogenization (FEH) control is proposed in a supervisory level controller. This will autonomously adjust inertia coefficients of the each GFMI to have homogenous transient response and will enforce coherency among the heterogenous DGs. This will prevent the PEDG from the adverse dynamic interactions during an interconnection and load disturbance. Various case studies are presented that validates the effectiveness of the proposed FEH control.more » « less