A typical way in which network data is recorded is to measure all interactions involving a specified set of core nodes, which produces a graph containing this core together with a potentially larger set of fringe nodes that link to the core. Interactions between nodes in the fringe, however, are not present in the resulting graph data. For example, a phone service provider may only record calls in which at least one of the participants is a customer; this can include calls between a customer and a non-customer, but not between pairs of non-customers. Knowledge of which nodes belong to the core is crucial for interpreting the dataset, but this metadata is unavailable in many cases, either because it has been lost due to difficulties in data provenance, or because the network consists of “found data” obtained in settings such as counter-surveillance. This leads to an algorithmic problem of recovering the core set. Since the core is a vertex cover, we essentially have a planted vertex cover problem, but with an arbitrary underlying graph. We develop a framework for analyzing this planted vertex cover problem, based on the theory of fixed-parameter tractability, together with algorithms for recovering the core. Our algorithms are fast, simple to implement, and out-perform several baselines based on core-periphery structure on various real-world datasets.
more »
« less
Link Prediction in Networks with Core-Fringe Data
Data collection often involves the partial measurement of a larger system. A common example arises in collecting network data: we often obtain network datasets by recording all of the interactions among a small set of core nodes, so that we end up with a measurement of the network consisting of these core nodes along with a potentially much larger set of fringe nodes that have links to the core. Given the ubiquity of this process for assembling network data, it is crucial to understand the role of such a “core-fringe” structure. Here we study how the inclusion of fringe nodes affects the standard task of network link prediction. One might initially think the inclusion of any additional data is useful, and hence that it should be beneficial to include all fringe nodes that are available. However, we find that this is not true; in fact, there is substantial variability in the value of the fringe nodes for prediction. Once an algorithm is selected, in some datasets, including any additional data from the fringe can actually hurt prediction performance; in other datasets, including some amount of fringe information is useful before prediction performance saturates or even declines; and in further cases, including the entire fringe leads to the best performance. While such variety might seem surprising, we show that these behaviors are exhibited by simple random graph models.
more »
« less
- PAR ID:
- 10113287
- Date Published:
- Journal Name:
- The World Wide Web Conference
- Page Range / eLocation ID:
- 94 to 104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT. A typical way in which network data is recorded is to measure all the interactions among a specified set of core nodes; this produces a graph containing this core together with a potentially larger set of fringe nodes that have links to the core. Interactions between pairs of nodes in the fringe, however, are not recorded by this process, and hence not present in the resulting graph data. For example, a phone service provider may only have records of calls in which at least one of the participants is a customer; this can include calls between a customer and a non-customer, but not between pairs of non-customers. Knowledge of which nodes belong to the core is an important piece of metadata that is crucial for interpreting the network dataset. But in many cases, this metadata is not available, either because it has been lost due to difficulties in data provenance, or because the network consists of “found data” obtained in settings such as counter-surveillance. This leads to a natural algorithmic problem, namely the recovery of the core set. Since the core set forms a vertex cover of the graph, we essentially have a planted vertex cover problem, but with an arbitrary underlying graph. We develop a theoretical framework for analyzing this planted vertex cover problem, based on results in the theory of fixed- parameter tractability, together with algorithms for recovering the core. Our algorithms are fast, simple to implement, and out-perform several methods based on network core-periphery structure on various real-world datasets.more » « less
-
In this paper, we propose a novel representation learning framework, namely HIN2Vec, for heterogeneous information networks (HINs). The core of the proposed framework is a neural network model, also called HIN2Vec, designed to capture the rich semantics embedded in HINs by exploiting different types of relationships among nodes. Given a set of relationships specified in forms of meta-paths in an HIN, HIN2Vec carries out multiple prediction training tasks jointly based on a target set of relationships to learn latent vectors of nodes and meta-paths in the HIN. In addition to model design, several issues unique to HIN2Vec, including regularization of meta-path vectors, node type selection in negative sampling, and cycles in random walks, are examined. To validate our ideas, we learn latent vectors of nodes using four large-scale real HIN datasets, including Blogcatalog, Yelp, DBLP and U.S. Patents, and use them as features for multi-label node classification and link prediction applications on those networks. Empirical results show that HIN2Vec soundly outperforms the state-of-the-art representation learning models for network data, including DeepWalk, LINE, node2vec, PTE, HINE and ESim, by 6.6% to 23.8% ofmicro-f1 in multi-label node classification and 5% to 70.8% of MAP in link prediction.more » « less
-
Abstract While machine learning has emerged in recent years as a useful tool for the rapid prediction of materials properties, generating sufficient data to reliably train models without overfitting is often impractical. Towards overcoming this limitation, we present a general framework for leveraging complementary information across different models and datasets for accurate prediction of data-scarce materials properties. Our approach, based on a machine learning paradigm called mixture of experts, outperforms pairwise transfer learning on 14 of 19 materials property regression tasks, performing comparably on four of the remaining five. The approach is interpretable, model-agnostic, and scalable to combining an arbitrary number of pre-trained models and datasets to any downstream property prediction task. We anticipate the performance of our framework will further improve as better model architectures, new pre-training tasks, and larger materials datasets are developed by the community.more » « less
-
null (Ed.)It is well established that many datasets used for computer vision tasks are not representative and may be biased. The result of this is that evaluation metrics may not reflect real-world performance and might expose some groups (often minorities) to greater risks than others. Imaging photoplethysmography is a set of techniques that enables noncontact measurement of vital signs using imaging devices. While these methods hold great promise for low-cost and scalable physiological monitoring, it is important that performance is characterized accurately over diverse populations. We perform a meta-analysis across three datasets, including 73 people and over 400 videos featuring a broad range of skin types to study how skin types and gender affect the measurements. While heart rate measurement can be performed on all skin types under certain conditions, we find that average performance drops significantly for the darkest skin type. We also observe a slight drop in the performance for females. We compare supervised and unsupervised learning algorithms and find that skin type does not impact all methods equally. The imaging photoplethysmography community should devote greater efforts to addressing these disparities and collecting representative datasets.more » « less
An official website of the United States government

