It is impossible to deterministically solve wait-free consensus in an asynchronous system. The classic proof uses a valency argument, which constructs an infinite execution by repeatedly extending a finite execution. We introduce extension-based proofs, a class of impossibility proofs that are modelled as an interaction between a prover and a protocol and that include valency arguments.
Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k ≥ 2 processes in a wait-free manner. However, it was unknown whether proofs based on simpler techniques were possible. We show that this impossibility result cannot be obtained by an extension-based proof and, hence, extension-based proofs are limited in power.
more »
« less
Valency-Augmented Dependency Parsing
We present a complete, automated, and efficient approach for utilizing valency analysis in making dependency parsing decisions. It includes extraction of valency patterns, a probabilistic model for tagging these patterns, and a joint decoding process that explicitly considers the number and types of each token{'}s syntactic dependents. On 53 treebanks representing 41 languages in the Universal Dependencies data, we find that incorporating valency information yields higher precision and F1 scores on the core arguments (subjects and complements) and functional relations (e.g., auxiliaries) that we employ for valency analysis. Precision on core arguments improves from 80.87 to 85.43. We further show that our approach can be applied to an ostensibly different formalism and dataset, Tree Adjoining Grammar as extracted from the Penn Treebank; there, we outperform the previous state-of-the-art labeled attachment score by 0.7. Finally, we explore the potential of extending valency patterns beyond their traditional domain by confirming their helpfulness in improving PP attachment decisions.
more »
« less
- Award ID(s):
- 1741441
- PAR ID:
- 10113320
- Date Published:
- Journal Name:
- Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
- Page Range / eLocation ID:
- 1277 to 1291
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The emergence of database-as-a-service platforms has made deploying database applications easier than before. Now, developers can quickly create scalable applications. However, designing performant, maintainable, and accurate applications is challenging. Developers may unknowingly introduce anti-patterns in the application's SQL statements. These anti-patterns are design decisions that are intended to solve a problem, but often lead to other problems by violating fundamental design principles. In this paper, we present SQLCheck, a holistic toolchain for automatically finding and fixing anti-patterns in database applications. We introduce techniques for automatically (1) detecting anti-patterns with high precision and recall, (2) ranking the anti-patterns based on their impact on performance, maintainability, and accuracy of applications, and (3) suggesting alternative queries and changes to the database design to fix these anti-patterns. We demonstrate the prevalence of these anti-patterns in a large collection of queries and databases collected from open-source repositories. We introduce an anti-pattern detection algorithm that augments query analysis with data analysis. We present a ranking model for characterizing the impact of frequently occurring anti-patterns. We discuss how SQLCheck suggests fixes for high-impact anti-patterns using rule-based query refactoring techniques. Our experiments demonstrate that SQLCheck enables developers to create more performant, maintainable, and accurate applications.more » « less
-
Abstract Cognate linkages provide the useful property in mechanism design of having the same motion. This paper describes an approach for determining all coupler curve cognates for planar linkages with rotational joints. Although a prior compilation of six-bar cognates due to Dijksman purported to be a complete list, that analysis assumed, without proof, that cognates only arise by permuting link rotations. Our approach eliminates that assumption using arguments concerning the singular foci of the coupler curve to constrain a cognate search and then completing the analysis by solving a precision point problem. This analysis confirms that Dijksman’s list for six-bars is comprehensive. As we further demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the set of permutations of link rotations that can possibly lead to cognates, thereby facilitating the discovery of all cognates that arise in that manner. However, for these higher order linkages, the further step of using a precision point test to eliminate the possibility of any other cognates is still beyond our computational capabilities.more » « less
-
Random generation of well-typed terms lies at the core of effective random testing of compilers for functional languages. Existing techniques have had success following a top-down type-oriented approach to generation that makes choices locally, which suffers from an inherent limitation: the type of an expression is often generated independently from the expression itself. Such generation frequently yields functions with argument types that cannot be used to produce a result in a meaningful way, leaving those arguments unused. Such use-less functions can hinder both performance, as the argument generation code is dead but still needs to be compiled, and effectiveness, as a lot of interesting optimizations are tested less frequently. In this paper, we introduce a novel algorithm that is significantly more effective at generating functions that use their arguments. We formalize both the local and the nonlocal algorithms as step-relations in an extension of the simply-typed lambda calculus with type and arguments holes, showing how delaying the generation of types for subexpressions by allowing nonlocal generation steps leads to useful functions.more » « less
-
null (Ed.)Single-cell RNA sequencing (scRNA-seq) data provides unprecedented information on cell fate decisions; however, the spatial arrangement of cells is often lost. Several recent computational methods have been developed to impute spatial information onto a scRNA-seq dataset through analyzing known spatial expression patterns of a small subset of genes known as a reference atlas. However, there is a lack of comprehensive analysis of the accuracy, precision, and robustness of the mappings, along with the generalizability of these methods, which are often designed for specific systems. We present a system-adaptive deep learning-based method (DEEPsc) to impute spatial information onto a scRNA-seq dataset from a given spatial reference atlas. By introducing a comprehensive set of metrics that evaluate the spatial mapping methods, we compare DEEPsc with four existing methods on four biological systems. We find that while DEEPsc has comparable accuracy to other methods, an improved balance between precision and robustness is achieved. DEEPsc provides a data-adaptive tool to connect scRNA-seq datasets and spatial imaging datasets to analyze cell fate decisions. Our implementation with a uniform API can serve as a portal with access to all the methods investigated in this work for spatial exploration of cell fate decisions in scRNA-seq data. All methods evaluated in this work are implemented as an open-source software with a uniform interface.more » « less