Ongoing scientific programs that monitor marine environmental and ecological systems and changes comprise an informal but collaborative, information-rich, and spatially extensive network for the Alaskan Arctic continental shelves. Such programs reflect contributions and priorities of regional, national, and international funding agencies, as well as private donors and communities. These science programs are operated by a variety of local, regional, state, and national agencies, and academic, Tribal, for-profit, and nongovernmental nonprofit entities. Efforts include research ship and autonomous vehicle surveys, year-long mooring deployments, and observations from coastal communities. Inter-program coordination allows cost-effective leveraging of field logistics and collected data into value-added information that fosters new insights unattainable by any single program operating alone. Coordination occurs at many levels, from discussions at marine mammal co-management meetings and interagency meetings to scientific symposia and data workshops. Together, the efforts represented by this collection of loosely linked long-term monitoring programs enable a biologically focused scientific foundation for understanding ecosystem responses to warming water temperatures and declining Arctic sea ice. Here, we introduce a variety of currently active monitoring efforts in the Alaskan Arctic marine realm that exemplify the above attributes. 
                        more » 
                        « less   
                    
                            
                            From sea ice to seals: a moored marine ecosystem observatory in the Arctic
                        
                    
    
            Abstract. Although Arctic marine ecosystems are changing rapidly,year-round monitoring is currently very limited and presents multiplechallenges unique to this region. The Chukchi Ecosystem Observatory (CEO)described here uses new sensor technologies to meet needs for continuous,high-resolution, and year-round observations across all levels of theecosystem in the biologically productive and seasonally ice-covered ChukchiSea off the northwest coast of Alaska. This mooring array records a broadsuite of variables that facilitate observations, yielding betterunderstanding of physical, chemical, and biological couplings, phenologies,and the overall state of this Arctic shelf marine ecosystem. While coldtemperatures and 8 months of sea ice cover present challenging conditions forthe operation of the CEO, this extreme environment also serves as a rigoroustest bed for innovative ecosystem monitoring strategies. Here, we presentdata from the 2015–2016 CEO deployments that provide new perspectives on theseasonal evolution of sea ice, water column structure, and physicalproperties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms,and export, zooplankton abundance and vertical migration, the occurrence ofArctic cod, and vocalizations of marine mammals such as bearded seals. Theseintegrated ecosystem observations are being combined with ship-basedobservations and modeling to produce a time series that documents biologicalcommunity responses to changing seasonal sea ice and water temperatures whileestablishing a scientific basis for ecosystem management. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1702456
- PAR ID:
- 10113928
- Date Published:
- Journal Name:
- Ocean Science
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 1812-0792
- Page Range / eLocation ID:
- 1423 to 1433
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Arctic and Antarctic sea ice has undergone significant and rapid change with the changing climate. Here, we present preindustrial and historical results from the newly released Community Earth System Model Version 2 (CESM2) to assess the Arctic and Antarctic sea ice. Two configurations of the CESM2 are available that differ only in their atmospheric model top and the inclusion of comprehensive atmospheric chemistry, including prognostic aerosols. The CESM2 configuration with comprehensive atmospheric chemistry has significantly thicker Arctic sea ice year‐round and better captures decreasing trends in sea ice extent and volume over the satellite period. In the Antarctic, both CESM configurations have similar mean state ice extent and volume, but the ice extent trends are opposite to satellite observations. We find that differences in the Arctic sea ice between CESM2 configurations are the result of differences in liquid clouds. Over the Arctic, the CESM2 configuration without prognostic aerosol formation has fewer aerosols to form cloud condensation nuclei, leading to thinner liquid clouds. As a result, the sea ice receives much more shortwave radiation early in the melt season, driving a stronger ice albedo feedback and leading to additional sea ice loss and significantly thinner ice year‐round. The aerosols necessary for the Arctic liquid cloud formation are produced from different precursor emissions and transported to the Arctic. Thus, the main reason sea ice differs in the Arctic is the transport of cloud‐impacting aerosols into the region, while the Antarctic remains relatively pristine from extrapolar aerosol transport.more » « less
- 
            Abstract Declines in Arctic sea ice cover are influencing the distribution of protected endemic marine mammals, many of which are important for local Indigenous Peoples, and increasing the presence of potentially disruptive industrial activities. Due to increasing conservation concerns, we conducted the first year‐round acoustic monitoring of waters off Gambell and Savoonga (St. Lawrence Island, Alaska), and in the Bering Strait to quantify vocalizing presence of bowhead whales, belugas, walruses, bearded seals, and ribbon seals. Bottom‐mounted archival acoustic recorders collected data for up to 10 months per deployment between 2012 and 2016. Spectrograms were analyzed for species‐typical vocalizations, and daily detection rates and presence/absence were calculated. Generalized additive models were used to model call presence as a function of time‐of‐year, sea surface temperature, and sea ice concentration. We identified seasonality in call presence for all species, corroborating previous acoustic and distribution studies, and identified finer‐scale spatiotemporal distribution via occurrence of call presence between different monitoring sites. Time‐of‐year was the strongest significant effect on call presence for all species. These data provide important information on Arctic endemic species' spatiotemporal distributions in biologically and culturally important areas within a rapidly changing Arctic region.more » « less
- 
            Many uncertainties and a complex suite of drivers of change are influencing the future of Arctic marine operations and commercial shipping. Most notably, the well-documented reduction of Arctic sea ice extent and thickness and the transition from thick, multi-year to seasonal, first-year ice are profound responses to anthropogenic climate change. The Arctic Ocean is becoming more navigable, with greater marine access now attained in most regions. The possibilities for longer seasons of marine navigation during spring, summer, and autumn are real, but the vision of new, year-round (routine) Arctic shipping that could alter global trade routes remains highly implausible. Arctic shipping remains largely destinational, with ships traveling into the Arctic Ocean to conduct an economic activity (Lasserre, 2019).more » « less
- 
            Understanding changes at the base of the marine food web in the rapidly transforming Arctic is essential for predicting and evaluating ecosystem dynamics. The northern Bering Sea experienced record low sea ice in 2018, followed by the second lowest in 2019, highlighting the urgency of the issue for this region. In this study, we investigated the diet of the clamMacoma calcareain the Pacific Arctic using DNA metabarcoding, employing 18S and rbcL markers to identify dietary components. Our findings revealed a strong dependence on pelagic diatoms, particularlyChaetocerossp., with a near absence of ice algae in the clam diet. This pattern reflects the lack of lipid-rich ice algal production during these low sea ice events. Additionally, our analysis detected algae capable of producing harmful toxins, notablyAlexandriumdinoflagellates, in the clam diet, underscoring the need for increased monitoring due to potential ecosystem and human health risks. This study demonstrates the utility of DNA metabarcoding in unraveling the complex dynamics of Arctic marine food webs and pelagic-benthic coupling, providing a glimpse of future conditions in a rapidly changing environment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    