skip to main content


Title: System Identification and Closed-Loop Control of a Hydraulically Amplified Self-Healing Electrostatic (HASEL) Actuator
This paper describes a system identification method and the development of a closed-loop controller for a Hydraulically Amplified Self-healing Electrostatic (HASEL) actuator. Our efforts focus on developing a reliable and consistent way to identify system models for these soft robotic actuators using high-speed videography based motion tracking. Utilizing a mass-spring-damper model we are able to accurately capture the behavior of a HASEL actuator. We use the resulting plant model to design a Proportional-Integral controller that demonstrates improved closed-loop tracking and steady-state error performance.  more » « less
Award ID(s):
1739452
NSF-PAR ID:
10119488
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
6417 to 6423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The need to create more viable soft sensors is increasing in tandem with the growing interest in soft robots. Several sensing methods, like capacitive stretch sensing and intrinsic capacitive self-sensing, have proven to be useful when controlling soft electro-hydraulic actuators, but are still problematic. This is due to challenges around high-voltage electronic interference or the inability to accurately sense the actuator at higher actuation frequencies. These issues are compounded when trying to sense and control the movement of a multiactuator system. To address these shortcomings, we describe a two-part magnetic sensing mechanism to measure the changes in displacement of an electro-hydraulic (HASEL) actuator. Our magnetic sensing mechanism can achieve high accuracy and precision for the HASEL actuator displacement range, and accurately tracks motion at actuation frequencies up to 30 Hz, while being robust to changes in ambient temperature and relative humidity. The high accuracy of the magnetic sensing mechanism is also further emphasized in the gripper demonstration. Using this sensing mechanism, we can detect submillimeter difference in the diameters of three tomatoes. Finally, we successfully perform closed-loop control of one folded HASEL actuator using the sensor, which is then scaled into a deformable tilting platform of six units (one HASEL actuator and one sensor) that control a desired end effector position in 3D space. This work demonstrates the first instance of sensing electro-hydraulic deformation using a magnetic sensing mechanism. The ability to more accurately and precisely sense and control HASEL actuators and similar soft actuators is necessary to improve the abilities of soft, robotic platforms. 
    more » « less
  2. Abstract Series elastic actuators (SEAs) are increasingly popular in wearable robotics due to their high fidelity closed-loop torque control capability. Therefore, it has become increasingly important to characterize its performance when used in dynamic environments. However, the conventional design approach does not fully capture the complexity of the entire exoskeleton system. These limitations stem from identifying design criteria with inadequate biomechanics data, utilizing an off-the-shelf user interface, and applying a benchtop-based proportional-integral-derivative control for actual low-level torque tracking. While this approach shows decent actuator performance, it does not consider human factors such as the dynamic back-driving nature of human-exoskeleton systems as well as soft human tissue dampening during the load transfer. Using holistic design guidelines to improve the SEA-based exoskeleton performance during dynamic locomotion, our final system has an overall mass of 4.8 kg (SEA mass of 1.1 kg) and can provide a peak joint torque of 108 Nm with a maximum velocity of 5.2 rad/s. Additionally, we present a user state-based feedforward controller to further improve the low-level torque tracking for diverse walking conditions. Our study results provide future exoskeleton designers with a foundation to further improve SEA-based exoskeleton’s torque tracking response for maximizing human-exoskeleton performance during dynamic locomotion. 
    more » « less
  3. null (Ed.)
    A closed-loop control algorithm for the reduction of turbulent flow separation over NACA 0015 airfoil equipped with leading-edge synthetic jet actuators (SJAs) is presented. A system identification approach based on Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) technique was used to predict nonlinear dynamics of the fluid flow and for the design of the controller system. Numerical simulations based on URANS equations are performed at Reynolds number of 106 for various airfoil incidences with and without closed-loop control. The NARMAX model for flow over an airfoil is based on the static pressure data, and the synthetic jet actuator is developed using an incompressible flow model. The corresponding NARMAX identification model developed for the pressure data is nonlinear; therefore, the describing function technique is used to linearize the system within its frequency range. Low-pass filtering is used to obtain quasi-linear state values, which assist in the application of linear control techniques. The reference signal signifies the condition of a fully re-attached flow, and it is determined based on the linearization of the original signal during open-loop control. The controller design follows the standard proportional-integral (PI) technique for the single-input single-output system. The resulting closed-loop response tracks the reference value and leads to significant improvements in the transient response over the open-loop system. The NARMAX controller enhances the lift coefficient from 0.787 for the uncontrolled case to 1.315 for the controlled case with an increase of 67.1%. 
    more » « less
  4. In a minimally invasive percutaneous procedure like biopsy, brachytherapy, and tissue ablation, the inner soft tissue is accessed through surgical needle-puncture of the skin. This process reduces tissue damage and risk of infection and improves patient recovery time. However, its effectiveness depends on the needle’s ability to travel on a curved path, avoid obstacles, and maintain high targeting accuracy. Conventional needles are passive and have limited steerability and trajectory correction capability. This has motivated researchers to develop actuation mechanisms to create active needles. In this study, an innovative active steerable needle with a single shape memory alloy (SMA) wire actuator is designed, fabricated, and tested for maneuver. A closed-loop Proportional Integral Derivative (PID) controller with position feedback is developed to control needle tip deflection in air and tissue-mimicking gels. The needle tip is deflected up to 5.75 mm in the air medium. In tissue-mimicking gel, it is deflected up to 15 mm in a predefined trajectory during a 100 mm insertion depth. Our results show that needle tip deflection control has an average root mean square error (RMSE) of 0.72 mm in the air and 1.26 mm in the tissue-mimicking gel. The trajectory tracking performance of the designed SMA actuated needle and its control system show the effectiveness of the active needle in the percutaneous procedures. Future work includes testing the needle’s performance in the biological tissues. 
    more » « less
  5. The work provides a general model of communication attacks on a networked infinite dimensional system. The system employs a network of inexpensive control units consisting of actuators, sensors and control processors. In an effort to replace a reduced number of expensive high-end actuating and sensing devices implementing an observer-based feedback, the alternate is to use multiple inexpensive actuators/sensors with static output feedback. In order to emulate the performance of the high-end devices, the controllers for the multiple actuator/sensors implement controllers which render the system networked. In doing so, they become prone to communication attacks either as accidental or deliberate actions on the connectivity of the control nodes. A single attack function is proposed which models all types of communication attacks and an adaptive detection scheme is proposed in order to (i) detect the presence of an attack, (ii) diagnose the attack and (iii) accommodate the attack via an appropriate control reconfiguration. The reconfiguration employs the adaptive estimates of the controller gains and restructure the controller adaptively in order to minimize the detrimental effects of the attack on closed-loop performance. Numerical studies on a 1D diffusion PDE employing networked actuator/sensor pairs are included in order to further convey the special architecture of detection and accommodation of networked systems under communication attacks. 
    more » « less