skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developmental bias in horned dung beetles and its contributions to innovation, adaptation, and resilience
Abstract Developmental processes transduce diverse influences during phenotype formation, thereby biasing and structuring amount and type of phenotypic variation available for evolutionary processes to act on. The causes, extent, and consequences of this bias are subject to significant debate. Here we explore the role of developmental bias in contributing to organisms’ ability to innovate, to adapt to novel or stressful conditions, and to generate well integrated, resilient phenotypes in the face of perturbations. We focus our inquiry on one taxon, the horned dung beetle genusOnthophagus, and review the role developmental bias might play across several levels of biological organization: (a) gene regulatory networks that pattern specific body regions; (b) plastic developmental mechanisms that coordinate body wide responses to changing environments and; (c) developmental symbioses and niche construction that enable organisms to build teams and to actively modify their own selective environments. We posit that across all these levels developmental bias shapes the way living systems innovate, adapt, and withstand stress, in ways that can alternately limit, bias, or facilitate developmental evolution. We conclude that the structuring contribution of developmental bias in evolution deserves further study to better understand why and how developmental evolution unfolds the way it does.  more » « less
Award ID(s):
1901680
PAR ID:
10119957
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolution & Development
Volume:
22
Issue:
1-2
ISSN:
1520-541X
Format(s):
Medium: X Size: p. 165-180
Size(s):
p. 165-180
Sponsoring Org:
National Science Foundation
More Like this
  1. Moura, Mario R. (Ed.)
    Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current modeling approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic understanding of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales. 
    more » « less
  2. Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current model- ing approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic under- standing of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales. 
    more » « less
  3. ABSTRACT A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well‐suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism – emphasizing eco evo devo, and identify current gaps in knowledge. 
    more » « less
  4. null (Ed.)
    We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation. 
    more » « less
  5. The multiplication rates of pathogenic organisms influence disease progression, efficacy of immunity and therapeutics, and potential for within-host evolution. Thus, accurate estimates of multiplication rates are essential for biological understanding. We recently showed that common methods for inferring multiplication rates from malaria infection data substantially overestimate true values (i.e. under simulated scenarios), providing context for extraordinarily large estimates in human malaria parasites. A key unknown is whether this bias arises specifically from malaria parasite biology or represents a broader concern. Here, we identify the potential for biased multiplication rate estimates across pathogenic organisms with different developmental biology by generalizing a within-host malaria model. We find that diverse patterns of developmental sampling bias—the change in detectability over developmental age—reliably generate overestimates of the fold change in abundance, obscuring not just true growth rates but potentially even whether populations are expanding or declining. This pattern emerges whenever synchrony—the degree to which development is synchronized across the population of pathogenic organisms comprising an infection—decays with time. Only with simulated increases in synchrony do we find noticeable underestimates of multiplication rates. Obtaining robust estimates of multiplication rates may require accounting for diverse patterns of synchrony in pathogenic organisms. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’. 
    more » « less