Abstract Flooding and salinization triggered by storm surges threaten the survival of coastal forests. After a storm surge event, soil salinity can increase by evapotranspiration or decrease by rainfall dilution. Here we used a 1D hydrological model to study the combined effect of evapotranspiration and rainfall on coastal vegetated areas. Our results shed light on tree root uptake and salinity infiltration feedback as a function of soil characteristics. As evaporation increases from 0 to 2.5 mm/day, soil salinity reaches 80 ppt in both sandy and clay loam soils in the first 5 cm of soil depth. Transpiration instead involves the root zone located in the first 40 cm of depth, affecting salinization in a complex way. In sandy loam soils, storm surge events homogeneously salinize the root zone, while in clay loam soils salinization is stratified, partially affecting tree roots. Soil salinity stratification combined with low permeability maintain root uptakes in clay loam soils 4/5‐time higher with respect to sandy loam ones. When cumulative rainfall is larger than potential evapotranspiration ETp(ETp/Rainfall ratios lower than 1), dilution promotes fast recovery to pre‐storm soil salinity conditions, especially in sandy loam soils. Field data collected after two storm surge events support the results obtained. Electrical conductivity (a proxy for salinity) increases when the ratio ETp/Rainfall is around 1.76, while recovery occurs when the ratio is around 0.92. In future climate change scenarios with higher temperatures and storm‐surge frequency, coastal vegetation will be compromised, because of soil salinity values much higher than tolerable thresholds.
more »
« less
Comparing the Biogeochemistry of Storm Surge Sediments and Pre-storm Soils in Coastal Wetlands: Hurricane Irma and the Florida Everglades
Hurricanes can alter the rates and trajectories of biogeochemical cycling in coastal wetlands. Defoliation and vegetation death can lead to increased soil temperatures, and storm surge can variously cause erosion or deposition of sediment leading to changes in soil bulk density, nutrient composition, and redox characteristics. The objective of this study was to compare the biogeochemistry of pre-storm soils and a carbonate-rich sediment layer deposited by Hurricane Irma that made landfall in southwest Florida as a category 3 storm in September 2017. We predicted that indicators of biogeochemical activity (e.g., potential soil respiration rates, microbial biomass (MBC), and extracellular enzyme activities) would be lower in the storm sediment layer because of its lower organic matter content relative to pre-storm soils. There were few differences between the storm sediment and pre-storm soils at two of the sites closest to the Gulf of Mexico (GOM). This suggests that marine deposition regularly influences soil formation at these sites and is not something that occurs only during hurricanes. At a third site, 8 km from the GOM, the pre-storm soils had much greater concentrations of organic matter, total N, total P, MBC, and higher potential respiration rates than the storm layer. At this same site, CO2 fluxes from intact soil cores containing a layer of storm sediment were 30% lower than those without it. This suggests that sediment deposition from storm surge has the potential to preserve historically sequestered carbon in coastal soils through reduced respiratory losses.
more »
« less
- PAR ID:
- 10120907
- Date Published:
- Journal Name:
- Estuaries and Coasts
- ISSN:
- 1559-2723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Storm surge has the potential to significantly increase suspended sediment flux to microtidal marshes. However, the overall effects of storm surge on microtidal marsh deposition have not been well quantified, with most modeling studies focusing on regular (astronomical) tidal flooding. Here we applied the Delft3D model to a microtidal bay‐marsh complex in Hog Bay, Virginia to quantify the contributions of storm surge to marsh deposition. We validated the model using spatially distributed hydrodynamic and suspended sediment data collected from the site and ran model simulations under different storm surge conditions with/without storm‐driven water level changes. Our results show that episodic storm surge events occurred 5% of the time at our study site, but contributed 40% of marsh deposition during 2009–2020. Our simulations illustrate that while wind‐driven waves control sediment resuspension on tidal flats, marsh deposition during storms was largely determined by tidal inundation associated with storm‐driven water levels. A moderate storm surge event can double sediment flux to most marshes around the bay and deliver more sediment to the marsh interior compared to simulations that include wind waves but not storm surge variations in water levels. Simulations of bay and marsh response to different storm surge events with varying magnitude of storm surge intensity reveal that total marsh deposition around the bay increased linearly with storm surge intensity, suggesting that future changes to storm magnitude and/or frequency would have significant implications for sediment supply to marshes at our study site.more » « less
-
ABSTRACT Labile carbon (C) inputs in soils are expected to increase in the future due to global change drivers such as elevated atmospheric CO2concentrations or warming and potential increases in plant primary productivity. However, the role of mycorrhizal association in modulating microbial activity and soil organic matter (SOM) biogeochemistry responses to increasing below‐ground C inputs remains unclear. We employed18O–H2O quantitative stable isotope probing to investigate the effects of synthetic root exudate addition (0, 250, 500, and 1000 μg C g soil−1) on bacterial growth traits and SOM biogeochemistry in rhizosphere soils of trees associated with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. Soil respiration increased proportionally to the amount of exudate addition in both AM and ECM soils. However, microbial biomass C (MBC) responses differed, increasing in AM and decreasing in ECM soils. In AM soils, exudate addition increased taxon‐specific and community‐wide relative growth rates of bacteria, leading to enhanced biomass production. Conversely, in ECM soils, relative growth rates were less responsive to exudate addition, and estimates of MBC mortality increased with increasing exudate addition. In the AM soils, aggregated bacterial growth traits were predictive of soil respiration, but this relationship was not observed in ECM soils, perhaps due to substantial MBC mortality. These findings highlight the distinct responses of bacterial communities in AM and ECM rhizosphere soils to exudate addition. Considering that microbial products contribute to the formation of stable soil organic carbon (SOC) pools, future increases in labile exudate release in response to global change may consequently lead to greater SOC gains in AM soils compared to ECM soils.more » « less
-
The frequency and persistence of tidal inundation varies along the coastal terrestrial-aquatic interface, from frequently inundated wetlands to rarely inundated upland forests. This inundation gradient controls soil and sediment biogeochemistry and influence the exchange of soils and sediments from terrestrial to aquatic domains. Although a rich literature exist on studies of the influence of tidal waters on the biogeochemistry of coastal ecosystem soils, few studies have experimentally addressed the reverse question: How do soils (or sediments) from different coastal ecosystems influence the biogeochemistry of the tidal waters that inundate them? To better understand initial responses of coastal waters that flood coastal wetlands and uplands, we conducted short-term laboratory experiments where seawater was amended with sediments and soils collected across regional gradients of inundation exposure (i.e., frequently to rarely inundated) for 14 sites across the Mid-Atlantic, USA. Measured changes in dissolved oxygen and greenhouse gas concentrations were used to calculate gas consumption or production rates occurring during seawater exposure to terrestrial materials. We also measured soil and water physical and chemical properties to explore potential drivers. We observed higher oxygen consumption rates for seawater incubated with soils/sediments from frequently inundated locations and higher carbon dioxide production for seawater incubated with soils from rarely inundated transect locations. Incubations with soil from rarely inundated sites produced the highest global warming potential, primarily driven by carbon dioxide and secondarily by nitrous oxide. We also found environmental drivers of gas rates varied notably between transect locations. Our findings indicate that seawater responses to soil and sediment inputs across coastal terrestrial-aquatic interfaces exhibit some consistent patterns and high intra- and inter-site variability, suggesting potential biogeochemical feedback loops as inundation regimes shift inland.more » « less
-
Adnan, Mohammed_Sarfaraz Gani (Ed.)Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond.more » « less
An official website of the United States government

