skip to main content


Title: Neural decoding systems using Markov Decision Processes
This paper presents a framework for modeling neural decoding using electromyogram (EMG) and electrocorticogram (ECoG) signals to interpret human intent and control prosthetic arms. Specifically, the method of this paper employs Markov Decision Processes (MDP) for neural decoding, parameterizing the policy using an artificial neural network. The system is trained using a modification of the Dataset Aggregation (DAgger) algorithm. The results presented here suggest that the approach of the paper performs better than the state-of-the-art.  more » « less
Award ID(s):
1533649
NSF-PAR ID:
10121191
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
974 to 978
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significance: The performance of traditional approaches to decoding movement intent from electromyograms (EMGs) and other biological signals commonly degrade over time. Furthermore, conventional algorithms for training neural network-based decoders may not perform well outside the domain of the state transitions observed during training. The work presented in this paper mitigates both these problems, resulting in an approach that has the potential to substantially he quality of live of people with limb loss. Objective: This paper presents and evaluates the performance of four decoding methods for volitional movement intent from intramuscular EMG signals. Methods: The decoders are trained using dataset aggregation (DAgger) algorithm, in which the training data set is augmented during each training iteration based on the decoded estimates from previous iterations. Four competing decoding methods: polynomial Kalman filters (KFs), multilayer perceptron (MLP) networks, convolution neural networks (CNN), and Long-Short Term Memory (LSTM) networks, were developed. The performance of the four decoding methods was evaluated using EMG data sets recorded from two human volunteers with transradial amputation. Short-term analyses, in which the training and cross-validation data came from the same data set, and long-term analyses training and testing were done in different data sets, were performed. Results: Short-term analyses of the decoders demonstrated that CNN and MLP decoders performed significantly better than KF and LSTM decoders, showing an improvement of up to 60% in the normalized mean-square decoding error in cross-validation tests. Long-term analysis indicated that the CNN, MLP and LSTM decoders performed significantly better than KF-based decoder at most analyzed cases of temporal separations (0 to 150 days) between the acquisition of the training and testing data sets. Conclusion: The short-term and long-term performance of MLP and CNN-based decoders trained with DAgger, demonstrated their potential to provide more accurate and naturalistic control of prosthetic hands than alternate approaches. 
    more » « less
  2. Abstract Objective . Neural decoding is an important tool in neural engineering and neural data analysis. Of various machine learning algorithms adopted for neural decoding, the recently introduced deep learning is promising to excel. Therefore, we sought to apply deep learning to decode movement trajectories from the activity of motor cortical neurons. Approach . In this paper, we assessed the performance of deep learning methods in three different decoding schemes, concurrent, time-delay, and spatiotemporal. In the concurrent decoding scheme where the input to the network is the neural activity coincidental to the movement, deep learning networks including artificial neural network (ANN) and long-short term memory (LSTM) were applied to decode movement and compared with traditional machine learning algorithms. Both ANN and LSTM were further evaluated in the time-delay decoding scheme in which temporal delays are allowed between neural signals and movements. Lastly, in the spatiotemporal decoding scheme, we trained convolutional neural network (CNN) to extract movement information from images representing the spatial arrangement of neurons, their activity, and connectomes (i.e. the relative strengths of connectivity between neurons) and combined CNN and ANN to develop a hybrid spatiotemporal network. To reveal the input features of the CNN in the hybrid network that deep learning discovered for movement decoding, we performed a sensitivity analysis and identified specific regions in the spatial domain. Main results . Deep learning networks (ANN and LSTM) outperformed traditional machine learning algorithms in the concurrent decoding scheme. The results of ANN and LSTM in the time-delay decoding scheme showed that including neural data from time points preceding movement enabled decoders to perform more robustly when the temporal relationship between the neural activity and movement dynamically changes over time. In the spatiotemporal decoding scheme, the hybrid spatiotemporal network containing the concurrent ANN decoder outperformed single-network concurrent decoders. Significance . Taken together, our study demonstrates that deep learning could become a robust and effective method for the neural decoding of behavior. 
    more » « less
  3. Recent studies have found that the position of mice or rats can be decoded from calcium imaging of brain activity offline. However, given the complex analysis pipeline, real-time position decoding remains a challenging task, especially considering strict requirements on hardware usage and energy cost for closed-loop feedback applications. In this paper, we propose two neural network based methods and corresponding hardware designs for real-time position decoding from calcium images. Our methods are based on: 1) convolutional neural network (CNN), 2) spiking neural network (SNN) converted from the CNN. We implemented quantized CNN and SNN models on FPGA. Evaluation results show that the CNN and the SNN methods achieve 56.3%/83.1% and 56.0%/82.8% Hit-1/Hit-3 accuracy for the position decoding across different rats, respectively. We also observed an accuracy-latency tradeoff of the SNN method in decoding positions under various time steps. Finally, we present our SNN implementation on the neuromorphic chip Loihi. Index Terms—calcium image, decoding, neural network. 
    more » « less
  4. Recent neural network-driven semantic role labeling (SRL) systems have shown impressive improvements in F1 scores. These improvements are due to expressive input representations, which, at least at the surface, are orthogonal to knowledge-rich constrained decoding mechanisms that helped linear SRL models. Introducing the benefits of structure to inform neural models presents a methodological challenge. In this paper, we present a structured tuning framework to improve mod-els using softened constraints only at training time. Our framework leverages the expressive-ness of neural networks and provides supervision with structured loss components. We start with a strong baseline (RoBERTa) to validate the impact of our approach, and show that our framework outperforms the baseline by learning to comply with declarative constraints. Additionally, our experiments with smaller training sizes show that we can achieve consistent improvements under low-resource scenarios 
    more » « less
  5. Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional Normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable node message in each iteration. Previous N-NMS efforts primarily investigated short block codes (N < 1000), because the number of N-NMS parameters required to be trained scales proportionately to the number of edges in the parity check matrix and the number of iterations. This imposes an impractical memory requirement for conventional tools such as Pytorch and Tensorflow to create the neural network and store gradients. This paper provides efficient methods of training the parameters of N-NMS decoders that support longer block lengths. Specifically, this paper introduces a family of Neural 2-dimensional Normalized (N-2D-NMS) decoders with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify a reduced parameter set, showing that the trained weights of N- NMS have a smaller value for the neurons corresponding to larger check/variable node degree. Further simulation results on a (3096,1032) Protograph-Based Raptor-Like (PBRL) code show that the N-2D-NMS decoder can achieve the same FER as N- NMS while also providing at least a 99.7% parameter reduction. Furthermore, the N-2D-NMS decoder for the (16200,7200) DVBS- 2 standard LDPC code shows a lower error floor than belief propagation. Finally, this paper proposes a hybrid decoder training structure that utilizes a neural network which combines a feedforward module with a recurrent module. The decoding performance and parameter reduction of the hybrid training depends on the length of recurrent module of the neural network. 
    more » « less