skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online Matching with General Arrivals
The online matching problem was introduced by Karp, Vazirani and Vazirani nearly three decades ago. In that seminal work, they studied this problem in bipartite graphs with vertices arriving only on one side, and presented optimal deterministic and randomized algorithms for this setting. In comparison, more general arrival models, such as edge arrivals and general vertex arrivals, have proven more challenging, and positive results are known only for various relaxations of the problem. In particular, even the basic question of whether randomization allows one to beat the trivially-optimal deterministic competitive ratio of 1/2 for either of these models was open. In this paper, we resolve this question for both these natural arrival models, and show the following. For edge arrivals, randomization does not help | no randomized algorithm is better than 1/2 competitive. For general vertex arrivals, randomization helps | there exists a randomized (1/2+ Ω(1))-competitive online matching algorithm.  more » « less
Award ID(s):
1814603 1750808 1618280 1527110
PAR ID:
10121530
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Symposium on Foundations of Computer Science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution over the points. Each request has to be matched to a free server, with cost equal to the distance. The goal is to minimize the expected total cost of the matching. Such stochastic arrival models have been widely studied for the maximization variants of the online matching problem; however, the only known result for the minimization problem is a tight O(log n)-competitiveness for the random-order arrival model. This is in contrast with the adversarial model, where an optimal competitive ratio of O(log n) has long been conjectured and remains a tantalizing open question. In this paper, we show that the i.i.d model admits substantially better algorithms: our main result is an O((log log log n)^2)-competitive algorithm in this model, implying a strict separation between the i.i.d model and the adversarial and random order models. Along the way we give a 9-competitive algorithm for the line and tree metrics - the first O(1)-competitive algorithm for any non-trivial arrival model for these much-studied metrics. 
    more » « less
  2. Vizing’s celebrated theorem asserts that any graph of maximum degree ∆ admits an edge coloring using at most ∆ + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2∆−1 colors, is optimal among online algorithms. Their lower bound has a caveat, however: it only applies to lowdegree graphs, with ∆ = O(log n), and they conjectured the existence of online algorithms using ∆(1 + o(1)) colors for ∆ = ω(log n). Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS’03 and Bahmani et al., SODA’10). We resolve the above conjecture for adversarial vertex arrivals in bipartite graphs, for which we present a (1+o(1))∆-edge-coloring algorithm for ∆ = ω(log n) known a priori. Surprisingly, if ∆ is not known ahead of time, we show that no (e/(e−1)−Ω(1))∆-edge-coloring algorithm exists.We then provide an optimal, (e/(e−1) +o(1))∆-edge-coloring algorithm for unknown ∆ = ω(log n). Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms. 
    more » « less
  3. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to be sublinear in the input size but allows an edge’s color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge coloring. Our online algorithms significantly improve upon the memory used by prior ones while achieving an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree Δ, our online O(Δ)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation hides polylog(n) factors). Under edge arrivals, we obtain an online O(Δ)-coloring in Õ(n√Δ) space. We also achieve a smooth color-space tradeoff: for any t = O(Δ), we get an O(Δt(log²Δ))-coloring in Õ(n√{Δ/t}) space, improving upon the state of the art that used Õ(nΔ/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs. 
    more » « less
  4. Given a set of points $$P = (P^+ \sqcup P^-) \subset \mathbb{R}^d$$ for some constant $$d$$ and a supply function $$\mu:P\to \mathbb{R}$$ such that $$\mu(p) > 0~\forall p \in P^+$$, $$\mu(p) < 0~\forall p \in P^-$$, and $$\sum_{p\in P}{\mu(p)} = 0$$, the geometric transportation problem asks one to find a transportation map $$\tau: P^+\times P^-\to \mathbb{R}_{\ge 0}$$ such that $$\sum_{q\in P^-}{\tau(p, q)} = \mu(p)~\forall p \in P^+$$, $$\sum_{p\in P^+}{\tau(p, q)} = -\mu(q) \forall q \in P^-$$, and the weighted sum of Euclidean distances for the pairs $$\sum_{(p,q)\in P^+\times P^-}\tau(p, q)\cdot ||q-p||_2$$ is minimized. We present the first deterministic algorithm that computes, in near-linear time, a transportation map whose cost is within a $$(1 + \varepsilon)$$ factor of optimal. More precisely, our algorithm runs in $$O(n\varepsilon^{-(d+2)}\log^5{n}\log{\log{n}})$$ time for any constant $$\varepsilon > 0$$. While a randomized $$n\varepsilon^{-O(d)}\log^{O(d)}{n}$$ time algorithm for this problem was discovered in the last few years, all previously known deterministic $$(1 + \varepsilon)$$-approximation algorithms run in~$$\Omega(n^{3/2})$$ time. A similar situation existed for geometric bipartite matching, the special case of geometric transportation where all supplies are unit, until a deterministic $$n\varepsilon^{-O(d)}\log^{O(d)}{n}$$ time $$(1 + \varepsilon)$$-approximation algorithm was presented at STOC 2022. Surprisingly, our result is not only a generalization of the bipartite matching one to arbitrary instances of geometric transportation, but it also reduces the running time for all previously known $$(1 + \varepsilon)$$-approximation algorithms, randomized or deterministic, even for geometric bipartite matching. In particular, we give the first $$(1 + \varepsilon)$$-approximate deterministic algorithm for geometric bipartite matching and the first $$(1 + \varepsilon)$$-approximate deterministic or randomized algorithm for geometric transportation with no dependence on $$d$$ in the exponent of the running time's polylog. As an additional application of our main ideas, we also give the first randomized near-linear $$O(\varepsilon^{-2} m \log^{O(1)} n)$$ time $$(1 + \varepsilon)$$-approximation algorithm for the uncapacitated minimum cost flow (transshipment) problem in undirected graphs with arbitrary \emph{real} edge costs. 
    more » « less
  5. null (Ed.)
    We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $$d$$ timesteps to be matched, after which they will leave the system in favor of an outside option. A platform can match groups of up to $$k$$ users together, indicating that they will share a ride. Each group of users yields a match value depending on how compatible they are with one another. As an example, in ridesharing, $$k$$ is the capacity of the service vehicles, and $$d$$ is the amount of time a user is willing to wait for a driver to be matched to them. We present results for both the utility maximization and cost minimization variants of the problem. In the utility maximization setting, the optimal competitive ratio is $$\frac{1}{d}$$ whenever $$k \geq 3$$, and is achievable in polynomial-time for any fixed $$k$$. In the cost minimization variation, when $k = 2$, the optimal competitive ratio for deterministic algorithms is $$\frac{3}{2}$$ and is achieved by a polynomial-time thresholding algorithm. When $k>2$, we show that a polynomial-time randomized batching algorithm is $$(2 - \frac{1}{d}) \log k$$-competitive, and it is NP-hard to achieve a competitive ratio better than $$\log k - O (\log \log k)$$. 
    more » « less