skip to main content


Title: Development of a 3D-printed force sensor with carbon paste
Force sensors play an important role in the biomedical devices industry, especially in motion- and pressure-related devices. Such sensors are designed to collect force or pressure data by converting it into electrical signals. The data can then be sent to and analyzed by a local or cloud-based processing unit. It is vital that the sensors can be fabricated in a way that time efficiency, cost efficiency, and quality are all maximized. The advent of three-dimensional (3D) printing has greatly facilitated prototyping and customized manufacturing, as compared to older crafting methods (such as welding and woodworking), 3D printing requires less skill and involves less costly materials making it much more time- and cost-efficient. Technological advancements have also improved the quality of the actual sensing materials used in sensor-based devices, and notably, carbon-based materials have become increasingly favored for use as sensing elements. In the presented sensor, the modern sensor fabrication methods of 3D printing and using carbon materials as sensing elements are combined. The sensor presented as a proof of the above concepts is a cantilever flex sensor. The sensor consists of a 30 mm-long cantilever extending from a 2.5 mm-thick wall, with a second wall of the same thickness parallel to the cantilever. After designing this structure and printing it using a 3D printer, the top surface of the cantilever was coated with a thin layer of conductive carbon paste and two copper wires were stripped and soldered to a pair of copper alligator clips, to be used for testing purposes. To test the sensor, the two copper wires were clipped onto the sensor (Figure 1A) and each wire was connected to a multimeter probe on the end opposite of the alligator clip. Then, using a set of four through holes in the parallel wall (along with a slotted rod), the tip of the cantilever was pressed down to an angle of 5, 10, 15, or 20 degrees (Figures 1B, 1C, 1D, and 1E, respectively) below the original plane of the cantilever and held there for 2 minutes. The resistance between the ends of the cantilever was measured throughout each trial by the multimeter, and the results (Figure 1F) for each angle were compiled and analyzed to determine the effect of each depression angle on impedance change, and thus, the overall effectiveness of the sensor. In the future, a notable improvement would be miniaturizing the sensor to facilitate in integration of the sensor in wearable and biomedical devices.  more » « less
Award ID(s):
1827173
NSF-PAR ID:
10124515
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
236th Electrochemical Society Meeting Abstracts
ISSN:
2151-2043
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stacked electronics boxes housing power, data acquisition and data processing components in water resistant compartments. A laptop computer with 8 TB of external storage and an independent Global Positioning System (GPS) antenna is used to run Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) software providing beamformed spectrogram data and live NAS data with capability of capturing several days of data. The acquisition system consists of Surface Mount Device (SMD) pre-amplifiers with filter to an analog differential pair shipboard COTS acquisition system. Pre-amplifiers are constructed using SMD technology where components are pressure tolerant and potting is not necessary. Potting of connectors, electronics and hydrophones via 3D printed molding techniques will be discussed. Array internal components are manufactured with Thermoplastic Polyurethane (TPU) 3D printed material to dampen array vibrations with forward and aft vibration isolation modules (VIM). Polyurethane foam (PUF) used to scatter breathing waves and dampen contact from wires inside the array without attenuating high frequencies and allowing for significant noise reduction. A single Tygon array section with a length of 7.5 m and diameter of 38 mm contains 8 transducer elements with a spacing of 75 cm (1 kHz design frequency). Pre- amplifiers and NAS modules are affixed using Vectran and steel wire rope positioned by swaged stops along the strength member. The tow cable length is 100 m with a diameter of 22 mm that is potted to a hose adapter to break out 12 braided copper wire twisted pair conductors and terminates the tow cable Vectran braid. This array in its current state of development is a low-cost alternative to obtain quality acoustic data from a towed array system. Used here for observation of whale vocalizations, this type of array also has many applications in military sonar and seismic surveying. Maintenance on the array can be performed without the use of special facilities or equipment for dehosing and conveniently uses castor oil as an environmentally safe pressure compensating and coupling fluid. Array development including selection of transducers, NAS modules, acoustic acquisition system, array materials and method of construction with results from several deployments will be discussed. We also present beamformed spectrograms containing humpback whale downsweep moans and underwater blowing (bubbles) sounds associated with feeding on sand lance (Ammodytes dubius). 
    more » « less
  2. Abstract

    Inkjet printing is rapidly emerging as a means to fabricate low‐cost electronic devices; however, its widespread adoption is hindered by the complexity of the inks and the relatively high processing temperatures, limiting it to only a few metals and substrates. A new approach for inkjet printing is described, based on commercially available, particle‐free inks formulated from inorganic metal salts and their subsequent low‐temperature conversion to metallic structures by a non‐equilibrium, inert gas plasma. This single, general method is demonstrated for a library of metals including gold (Au), silver (Ag), copper (Cu), palladium (Pd), platinum (Pt), lead (Pb), bismuth (Bi), and tin (Sn). As one figure of merit, the resistivities of the printed metals are measured to be between 2× and 10× of the respective bulk metals. Uniquely, it is found that the printed metal films exhibit a very large surface area because of the plasma‐initiated nucleation and growth process, making this technique attractive for sensing device applications. A Bi‐based trace Pb sensor, an Au‐based amyloid‐β42sensor, and an Au‐based strain gauge are fabricated as representative chemical, biological, and mechanical sensors, and are found to exhibit enhanced sensitivity compared to analogues made with conventional methods.

     
    more » « less
  3. Abstract: 3D printing offers significant potential in creating highly customized interactive and functional objects. However, at present ability to manufacture functional objects is limited by available materials (e.g., various polymers) and their process properties. For instance, many functional objects need stronger materials which may be satisfied with metal printers. However, to create wholly interactive devices, we need both conductors and insulators to create wiring, and electronic components to complete circuits. Unfortunately, the single material nature of metal printing, and its inherent high temperatures, preclude this. Thus, in 3D printed devices, we have had a choice of strong materials, or embedded interactivity, but not both. In this paper, we introduce a set of techniques we call FiberWire, which leverages a new commercially available capability to 3D print carbon fiber composite objects. These objects are light weight and mechanically strong, and our techniques demonstrate a means to embed circuitry for interactive devices within them. With FiberWire, we describe a fabrication pipeline takes advantage of laser etching and fiber printing between layers of carbon-fiber composite to form low resistance conductors, thereby enabling the fabrication of electronics directly embedded into mechanically strong objects. Utilizing the fabrication pipeline, we show a range of sensor designs, their performance characterization on these new materials and finally three fully printed example object that are both interactive and mechanically strong -- a bicycle handle bar with interactive controls, a swing and impact sensing golf club and an interactive game controller (Figure 1). 
    more » « less
  4. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis. 
    more » « less
  5. Abstract

    Covalent adaptable network (CAN) polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable, rehealable, and fully recyclable electronics. On the other hand, 3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom. In this paper, we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping, repairing, and recycling capabilities. The developed printable ink exhibits good printability, conductivity, and recyclability. The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels. Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized. Finally, a temperature sensor is 3D printed with defined patterns of conductive pathways, which can be easily mounted onto 3D surfaces, repaired after damage, and recycled using solvents. The sensing capability of printed sensors is maintained after the repairing and recycling. Overall, the 3D printed reshapeable, rehealable, and recyclable sensors possess complex geometry and extend service life, which assist in the development of polymer-based electronics toward broad and sustainable applications.

     
    more » « less