skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dempster-Shafer Theoretic Learning of Indirect Speech Act Comprehension Norms
For robots to successfully operate as members of human-robot teams, it is crucial for robots to correctly understand the intentions of their human teammates. This task is particularly difficult due to human sociocultural norms: for reasons of social courtesy (e.g., politeness), people rarely express their intentions directly, instead typically employing polite utterance forms such as Indirect Speech Acts (ISAs). It is thus critical for robots to be capable of inferring the intentions behind their teammates’ utterances based on both their interaction context (including, e.g., social roles) and their knowledge of the sociocultural norms that are applicable within that context. This work builds off of previous research on understanding and generation of ISAs using Dempster-Shafer Theoretic Uncertain Logic, by showing how other recent work in Dempster-Shafer Theoretic rule learning can be used to learn appropriate uncertainty intervals for robots’ representations of sociocultural politeness norms.  more » « less
Award ID(s):
1849348 1909847
PAR ID:
10125971
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Human dialogue is governed by communicative norms that speakers are expected to follow in order to be viewed as cooperative dialogue partners. Accordingly, for language-capable autonomous agents to be effective human teammates they must be able to understand and generate language that complies with those norms. Moreover, these linguistic norms are highly context sensitive, requiring autonomous agents to be able to model the contextual factors that dictate when and how those norms are applied. In this work, we consider three key linguistic norms (directness, brevity, and politeness), and examine the extent to which adherence to these norms varies under changes to three key contextual factors (potential for harm, interlocutor authority, and time pressure). Our results, based on a human-subject study involving 5,642 human utterances, provide strong evidence that speakers do indeed vary their adherence to these norms under changes to these contextual factors. 
    more » « less
  2. Empirical studies have suggested that language-capable robots have the persuasive power to shape the shared moral norms based on how they respond to human norm violations. This persuasive power presents cause for concern, but also the opportunity to persuade humans to cultivate their own moral development. We argue that a truly socially integrated and morally competent robot must be willing to communicate its objection to humans’ proposed violations of shared norms by using strategies such as blame-laden rebukes, even if doing so may violate other standing norms, such as politeness. By drawing on Confucian ethics, we argue that a robot’s ability to employ blame-laden moral rebukes to respond to unethical human requests is crucial for cultivating a flourishing “moral ecology” of human–robot interaction. Such positive moral ecology allows human teammates to develop their own moral reflection skills and grow their own virtues. Furthermore, this ability can and should be considered as one criterion for assessing artificial moral agency. Finally, this paper discusses potential implications of the Confucian theories for designing socially integrated and morally competent robots. 
    more » « less
  3. Humans are well-adept at navigating public spaces shared with others, where current autonomous mobile robots still struggle: while safely and efficiently reaching their goals, humans communicate their intentions and conform to unwritten social norms on a daily basis; conversely, robots become clumsy in those daily social scenarios, getting stuck in dense crowds, surprising nearby pedestrians, or even causing collisions. While recent research on robot learning has shown promises in data-driven social robot navigation, good-quality training data is still difficult to acquire through either trial and error or expert demonstrations. In this work, we propose to utilize the body of rich, widely available, social human navigation data in many natural human-inhabited public spaces for robots to learn similar, human-like, socially compliant navigation behaviors. To be specific, we design an open-source egocentric data collection sensor suite wearable by walking humans to provide multimodal robot perception data; we collect a large-scale (~100 km, 20 hours, 300 trials, 13 humans) dataset in a variety of public spaces which contain numerous natural social navigation interactions; we analyze our dataset, demonstrate its usability, and point out future research directions and use cases.11Website: https://cs.gmu.edu/-xiao/Research/MuSoHu/ 
    more » « less
  4. A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to associal robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this article, we pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots, and datasets. 
    more » « less
  5. Deployed social robots are increasingly relying on wakeword-based interaction, where interactions are human-initiated by a wakeword like “Hey Jibo”. While wakewords help to increase speech recognition accuracy and ensure privacy, there is concern that wakeword-driven interaction could encourage impolite behavior because wakeword-driven speech is typically phrased as commands. To address these concerns, companies have sought to use wake- word design to encourage interactant politeness, through wakewords like “⟨Name⟩, please”. But while this solution is intended to encourage people to use more “polite words”, researchers have found that these wakeword designs actually decrease interactant politeness in text-based communication, and that other wakeword designs could better encourage politeness by priming users to use Indirect Speech Acts. Yet there has been no previous research to directly compare these wakewords designs in in-person, voice-based human-robot interaction experiments, and previous in-person HRI studies could not effectively study carryover of wakeword-driven politeness and impoliteness into human-human interactions. In this work, we conceptually reproduced these previous studies (n=69) to assess how the wakewords “Hey ⟨Name⟩”, “Excuse me ⟨Name⟩”, and “⟨Name⟩, please” impact robot-directed and human-directed politeness. Our results demonstrate the ways that different types of linguistic priming interact in nuanced ways to induce different types of robot-directed and human-directed politeness. 
    more » « less