skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orbital angular momentum assisted ground penetrating radar
This paper explores using Orbital Angular Momentum (OAM) controlled electromagnetic waves for enhanced ground penetrating radar (GPR) imaging and detection. A macroscopic interpretation of OAM is propagating waves with vortex-shaped wave fronts. At the photon level OAM appears as a quantum degree of freedom with integer quanta of angular momentum added to each photon. This is in addition to Spin Angular Momentum (SAM). The use of OAM in GPR has at least two potential advantages. The vortex shape may enable better discernment of cylindrical versus non-cylindrical buried objects. At the quantum level entanglement of OAM with other quantum degrees of freedom may enable enhanced imaging, such as the ghost imaging of objects that produce weak signal returns. The results include experiments that demonstrate the generation and reception of EM waves with a circular pattern of antennas operating as phased arrays to produce vortex-shaped waves at frequencies and dimensions typical of conventional GPRs.  more » « less
Award ID(s):
1640687 1647095
PAR ID:
10128887
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
SPIE Defense + Commercial Sensing, 2019, Proceedings Volume 11012, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV; 110121C
Volume:
110121C
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Isaacs, Jason C.; Bishop, Steven S. (Ed.)
    Ultra-wideband (UWB) ground penetrating radar (GPR) is an effective, widely used tool for detection and mapping of buried targets. However, traditional ground penetrating radar systems struggle to resolve and identify congested target configurations and irregularly shaped targets. This is a significant limitation for many municipalities who seek to use GPR to locate and image underground utility pipes. This research investigates the implementation of orbital angular momentum (OAM) control in an UWB GPR, with the goal of addressing these limitations. Control of OAM is a novel technique which leverages an additional degree of freedom offered by spatially structured helical waveforms. This paper examines several free-space and buried target configurations to determine the ability of helical OAM waveforms to improve detectability and distinguishability of buried objects including those with symmetric, asymmetric, and chiral geometries. Microwave OAM can be generated using a uniform circular array (UCA) of antennas with phase delays applied according to azimuth angle. Here, a four-channel network analyzer transceiver is connected to a UCA to enable UWB capability. The characteristic phase delays of OAM waveforms are implemented synthetically via signal processing. The viability demonstrated with the method opens design and analysis degrees of freedom for penetrating radar that may help with discerning challenging targets, such as buried landmines and wires. 
    more » « less
  2. Raynal, Ann M.; Ranney, Kenneth I. (Ed.)
    Control of orbital angular momentum (OAM) offers the potential for increases in control, sensitivity, and security for high-performance microwave systems. OAM is characterized by an integer OAM mode where zero represents the case of a plane wave. Microwaves with a nonzero OAM mode propagate with a helical wavefront. Orthogonal OAM modes can be used to carry distinct information at the same frequency and polarization, increasing the data rate. The OAM waveform may also increase radar detection capability for certain shaped objects. OAM can be induced by broadcasting a plane wave through a spatial phase plate (SPP) dielectric which introduces an azimuthally dependent phase delay. However, SPPs are frequency-specific, which presents an obstacle for harnessing OAM in frequency-modulated communication systems and wide-bandwidth radar. In this study, we develop a circular phased array to synthesize the desired vortex-shaped wavefront. This approach offers a critical advantage: the phases of all antenna elements are easily programmable under different frequencies. As a result, transmission and reception of the OAM beam can be controlled with great flexibility, making it operable over a wide frequency spectrum, which leverages OAM radar functionality and performance. In this paper, we will investigate a wide-bandwidth radar with OAM mode-control and signal processing. 
    more » « less
  3. Abstract Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage. 
    more » « less
  4. Light carries both spin angular momentum (SAM) and orbital angular momentum (OAM), which can be used as potential degrees of freedom for quantum information processing. Quantum emitters are ideal candidates towards on-chip control and manipulation of the full SAM–OAM state space. Here, we show coupling of a spin-polarized quantum emitter in a monolayer W S e 2 with the whispering gallery mode of a S i 3 N 4 ring resonator. The cavity mode carries a transverse SAM of σ<#comment/> = ±<#comment/> 1 in the evanescent regions, with the sign depending on the orbital power flow direction of the light. By tailoring the cavity–emitter interaction, we couple the intrinsic spin state of the quantum emitter to the SAM and propagation direction of the cavity mode, which leads to spin–orbit locking and subsequent chiral single-photon emission. Furthermore, by engineering how light is scattered from the WGM, we create a high-order Bessel beam which opens up the possibility to generate optical vortex carrying OAM states. 
    more » « less
  5. Non-Hermitian exceptional points (EPs) represent a special type of degeneracy where not only the eigenvalues coalesce, but also the eigenstates tend to collapse on each other. Recent studies have shown that in the presence of an EP, light-matter interactions are profoundly modified, leading to a host of novel optical phenomena ranging from enhanced sensitivity to chiral light transport. As of now, however, in order to stabilize a system at the vicinity of an exceptional point, its related parameters must be carefully tuned and/or continuously controlled. To overcome this limitation, here we introduce a new family of broadband exceptional points based on unidirectional coupling, implemented by incorporating an Sshaped waveguide in a microring cavity. In active settings, the resulting unidirectionality exhibits unprecedented resilience to perturbations, thus providing a robust and tunable approach for directly generating beams with distinct orbital angular momentum (OAM). This work could open up new possibilities for manipulating OAM degrees of freedom in applications pertaining to telecommunications and quantum computing, while at the same time may expand the notions of non-Hermiticity in the orbital angular momentum space. 
    more » « less