skip to main content

Title: Increasing Minority Youths' Participation in Computing through Near-Peer Mentorship
It is critical to focus on diversity and increasing participation of underrepresented groups in computing. To address this need, we must better understand minorities' access to role models and mentors, especially at a young age, as research and practice shows that these relationships can affect students' self-efficacy and motivation in the educational fields and careers they choose to pursue. We provided a 9-Saturday programming camp to middle school students in Newark, New Jersey with near-peer mentors (first year, college student instructors) to learn more about the younger students' initial access to role-models and mentors, and how an intervention might change this. Our camp served a total of 28 minority students (17 males and 11 females; grades 5-7) from a low-income, urban area. We found that when asked at the beginning of the camp, our middle students largely reported that they did not have any role-models or mentors in computing. However, at the conclusion of the camp, these same students indicated that they developed strong connections with their near-peer mentors and even saw them as role-models. These findings highlight the need for more mentorship opportunities for students of all ages, and the importance of providing resources and support to help develop and nurture these connections.  more » « less
Award ID(s):
1837489 1657160
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of computing sciences in colleges
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. 
    more » « less
  2. In response to the national demand to increase participation in CS, we argue that youth’s interest in computer science (CS) can be sparked by providing them with role models who are relatable and who resonate with their identities. To that end, we developed a mentoring model in which we train high schoolers to be near-peer mentors for middle schoolers learning to program in summer camps. In this paper, we present results from a mixed-methods study where we examined the relationship between mentor relatability and middle school campers’ self-efficacy and interest in CS. Pre- and post-surveys were used to measure campers’ affective outcomes around computing and mentor relatability. In addition, interviews and observations were used to illustrate the mechanisms that led to change in affect. Our findings suggest that mentor relatability is a significant predictor of campers’ self-efficacy and interest in CS. Results from the qualitative data further exemplify how mentor relatability was perceived and manifested in the camps. 
    more » « less
  3. null (Ed.)
    In response to the need to broaden participation in computer science, we designed a summer camp to teach middle-school-aged youth to code apps with MIT App Inventor. For the past four summers, we have observed significant gains in youth's interest and self-efficacy in computer science, after attending our camps. The majority of these youth, however, were youth from our local community. To provide equal access across the state and secure more diversity, we were interested in examining the effect of the camp on a broader population of youth. Thus, we partnered with an outreach program to reach and test our camps on youth from low-income high-poverty areas in the Intermountain West. During the summer of 2019, we conducted two sets of camps: locally advertised app camps that attracted youth from our local community and a second set of camps as part of a larger outreach program for youth from low-income high-poverty areas. The camps for both populations followed the same design of personnel, camp activities, structure, and curriculum. However, the background of the participants was slightly different. Using survey data, we found that the local sample experienced significant gains in both self-efficacy and interest, while the outreach group only reported significant gains in self-efficacy after attending the camp. However, the qualitative data collected from the outreach participants indicated that they had a positive experience both with the camp and their mentors. In this article, we discuss the camp design and findings in relation to strategies for broadening participation in Computer Science education. 
    more » « less
  4. Underrepresentation of women and students of color in science, technology, engineering, and math is a national epidemic. The lack of socioeconomic, gender, and racial/ethnic diversity in computer science is particularly pronounced—only 11% of recent computing graduates were women, while Hispanics comprised only 7% of all Bachelor degree earners in the United States (AUTHORS, 2016). Students of color face isolation in higher education, particularly in STEM majors, lack mentors, role models, and advocates who resemble them, and often experience implicit bias that can put them at risk for poor performance in the classroom (Seymour & Hewitt, 1997; Steele, 1995, Tate & Linn, 2005). Yet underrepresented students persevere in adversity and do become successful professionals in STEM fields, despite the odds. This study aims to reflect an assets-based approach to the study of computer science undergraduates who persevere in the major at 6 public Hispanic-serving institutions (H.S.I.s), colleges and universities in which 25% of the enrolled student body identifies as Hispanic/Latinx. The social contexts of computer science and computer engineering departments at H.S.I.s are rich for the exploration of persistence because, like their students, H.S.I.s are often perceived as lacking in resources and prestige, yet these computing departments are struggling with growth as awareness of computing as a viable career option expands nationally (NASEM, 2018). The lower tuition and policies which make enrollment “open” to “less selective” provide access to students who may not typically have access to a 4 year degree, yet the institutions may lack financial resources needed to provide extensive student support services on par with predominantly white institutions (P.W.I.s). These settings are important contexts for studying persistence from a qualitative, socio cultural perspective that considers the strengths of students’ cultural and familial backgrounds rather than focusing on weaknesses and differences from the dominant culture (in the United States, that of white, middle class individuals). At the same time, our study can shed light on student-developed strategies to persevere in a demanding field of study. 
    more » « less
  5. Abstract Background

    Engineering‐oriented bridge programs and camps are popular strategies for broadening participation. The students who often serve as counselors and mentors in these programs are integral to their success.


    Predicated on the belief that mentoring contributes to positive outcomes for the mentors themselves, we sought to understand how undergraduate student mentors approached and experienced their work with a 6‐day overnight, NSF‐sponsored youth engineering camp (YEC). This study was guided by the question: How did YEC camp counselors approach and experience their roles as mentors?


    We conducted an exploratory qualitative study of four Black undergraduate engineering students' experiences with and approaches to near‐peer mentorship in the YEC program. Data consisted of transcripts from two post‐program interviews and one written reflection from each participant. We analyzed data through abductive coding and the funds of knowledge framework.


    Through subsequent interpretation of code categories, we found YEC mentors: (1) engaged in altruistic motivations as YEC mentors, (2) leveraged previous experiences to guide their approaches to mentorship, and (3) engaged in self‐directed learning and development.


    This study highlights the knowledge and strategies that YEC mentors drew upon in their roles, and how they sought and achieved various personal, academic, and professional benefits. Insights from this study illustrate how near‐peer mentors can support their and others' engineering aspirations.

    more » « less