Calibrations of the PM4Silt constitutive model are presented for two low-plasticity fine-grained soils that exhibit significantly different cyclic loading be-haviors. The PM4Silt model is a stress-ratio controlled, critical state compatible, bounding surface plasticity model that was recently developed for representing low-plasticity silts and clays in geotechnical earthquake engineering applications. The low-plasticity clayey silt and silty clay examined herein were reconstituted mixtures of silica silt and kaolin with plasticity indices (PIs) of 6 and 20. Un-drained monotonic and undrained cyclic direct simple shear (DSS) tests were per-formed on normally consolidated, slurry deposited specimens. Calibration of the PM4Silt model was based on the monotonic and cyclic DSS test data, plus em-pirical relationships for strain-dependent secant shear moduli and equivalent damping ratios. The calibration process and performance of the PM4Silt constitu-tive model are described for each soil. The results illustrate that PM4Silt is capa-ble of reasonably approximating a range of monotonic and cyclic loading behav-iors important to many earthquake engineering applications and is relatively easy to calibrate.
more »
« less
Optimal Deformation Modes for Estimating Soil Properties
Accurate estimation of soil mechanical properties represents a crucial step for most engineering applications. Both in situ and laboratory testing fundamentally rest on mechanically deforming (actuating) the material and simultaneously measuring its response in terms of displacements and stresses (reactions). Facing this widely adopted scheme, key questions remain unanswered: 1) what is the optimal type and/or mode of actuation that can most effectively extract soil properties; 2) what types of measurements are most useful for inferring material constants? As a first step in the investigation of these questions, an inverse model for the direct simple shear (DSS) test is constructed, wherein measurable responses are used to back-calculate soil properties. Specimens with two different aspect ratios are considered to study the influence of the deformation mode. The effect of the choice of measurements (i.e., which displacements and/or stresses are observed) is explored by assessing inverse model performance considering the DSS test as a boundary value problem, with variable displacement and stress fields, versus the conventional interpretation as an elemental test. Parameter sensitivities and correlation coefficients are employed as quantifiable metrics to compare material characterization based on different aspect ratios and types of measurements, and to interpret the performance of inverse analysis.
more »
« less
- Award ID(s):
- 1742849
- PAR ID:
- 10131510
- Date Published:
- Journal Name:
- Geo-Congress 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Existing analytical flow models for predicting flow rates at microscale seal displacements are limited to two separate domains. The first assumes a small channel length to height aspect ratio at relatively large seal displacements. The second assumes a large channel length to height aspect ratio at relatively small seal displacements. A piecewise analytical model for compressible flow is developed here to enable predicting flow rates in valves with fluid pathways of any aspect ratio. The new model is validated by numerical studies and experiment. The results are applicable to flat valve seals having a cylindrical seal boss feature with fluid passage length to height aspect ratios ranging from 3.3 to 800. The new model is particularly useful for the design of microvalves and macroscale valves with small actuator displacements.more » « less
-
Abstract. Climate change threatens our ability to grow food for an ever-increasing population. There is aneed for high-quality soil moisture predictions in under-monitored regionslike Africa. However, it is unclear if soil moisture processes are globallysimilar enough to allow our models trained on available in situ data tomaintain accuracy in unmonitored regions. We present a multitask longshort-term memory (LSTM) model that learns simultaneously from globalsatellite-based data and in situ soil moisture data. This model is evaluated inboth random spatial holdout mode and continental holdout mode (trained onsome continents, tested on a different one). The model compared favorably tocurrent land surface models, satellite products, and a candidate machinelearning model, reaching a global median correlation of 0.792 for the randomspatial holdout test. It behaved surprisingly well in Africa and Australia,showing high correlation even when we excluded their sites from the trainingset, but it performed relatively poorly in Alaska where rapid changes areoccurring. In all but one continent (Asia), the multitask model in theworst-case scenario test performed better than the soil moisture activepassive (SMAP) 9 km product. Factorial analysis has shown that the LSTM model'saccuracy varies with terrain aspect, resulting in lower performance for dryand south-facing slopes or wet and north-facing slopes. This knowledgehelps us apply the model while understanding its limitations. This model isbeing integrated into an operational agricultural assistance applicationwhich currently provides information to 13 million African farmers.more » « less
-
We report the effect of shape anisotropy and material properties on the directed assembly of binary suspensions composed of magnetizable ellipsoids. In a Monte Carlo simulation, we implement the ellipsoid-dipole model to calculate the pairwise dipolar interaction energy as a function of position and orientation. The analysis explores dilute suspensions of paramagnetic and diamagnetic ellipsoids with different aspect ratios in a superparamagnetic medium. We analyze the local order of binary structuresas a function of particle aspect ratio, medium permeability, and dipolar interaction strength. Our results show that local order and symmetry are tunable under the influence of a uniform magnetic field when one component of the structure is dilute with respect to the other. The simulation results match previously reported experiments on the directed assembly of binary suspension of spheres. Additionally, we report the conditions on particle aspect ratios and medium properties for various structures with rotational symmetries, as well as open and enclosed structures under the influence of a uniform magnetic field.more » « less
-
The dynamic properties of a clean sand under different degrees of saturation is investigated using a modified custom built Direct Simple Shear (DSS) apparatus at the University of New Hampshire. The specific characteristics of the DSS are presented and the testing procedures are discussed. The device utilizes the axis translation and tensiometric techniques to control the matric suction in the soil specimen. The investigation on F75 Ottawa Sand shows a decrease in shear modulus and an increase in damping by increasing the shear strain over the tested range of strains for various degrees of saturation; dry, saturated, and partially saturated. The modulus reduction in the applied range of medium shear strains regardless of the degree of saturation demonstrates the capability of the DSS in consistently capturing the changes of dynamic properties. Experimental results indicate that the matric suction can have a substantial effect on the stiffness of the soil. However, the extent of this effect may depend on the induced strain level the effective stress in unsaturated soil. In addition, partially saturated specimens resulted in lower dynamic compression.more » « less
An official website of the United States government

