skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing coastal restoration with the stress gradient hypothesis
Restoration efforts have been escalating worldwide in response to widespread habitat degradation. However, coastal restoration attempts notoriously vary in their ability to establish resilient, high-functioning ecosystems. Conventional restoration attempts disperse transplants in competition-minimizing arrays, yet recent studies suggest that clumping transplants to maximize facilitative interactions may improve restoration success. Here, we modify the stress gradient hypothesis to generate predictions about where each restoration design will perform best across environmental stress gradients. We then test this conceptual model with field experiments manipulating transplant density and configuration across dune elevations and latitudes. In hurricane-damaged Georgia (USA) dunes, grass transplanted in competition-minimizing (low-density, dispersed) arrays exhibited the highest growth, resilience to disturbance and dune formation in low-stress conditions. In contrast, transplants survived best in facilitation-maximizing (high-density, clumped) arrays in high-stress conditions, but these benefits did not translate to higher transplant growth or resilience. In a parallel experiment in Massachusetts where dune grasses experience frequent saltwater inundation, fewer transplants survived, suggesting that there are thresholds above which intraspecific facilitation cannot overcome local stressors. These results suggest that ecological theory can be used to guide restoration strategies based on local stress regimes, maximizing potential restoration success and return-on-investment of future efforts.  more » « less
Award ID(s):
1832178
PAR ID:
10132012
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
286
Issue:
1917
ISSN:
0962-8452
Page Range / eLocation ID:
20191978
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As coral reefs degrade worldwide, researchers and managers need to determine whether corals can acclimatize to altered local conditions or whether their fixed phenotypes prevent coral persistence under these new environmental conditions. Fixed phenotypes could produce environmental mismatches that reduce population connectivity and exacerbate decline in the near-term, but a capacity for acclimatization could be harnessed in both passive and proactive coral restoration efforts. Here, we conducted a reciprocal transplant experiment in Mo‘orea, French Polynesia, to test how intraspecific performance of 2 common coral species (Acropora hyacinthusandPocillopora verrucosa) varied between a neighboring forereef and backreef that differed dramatically in trajectories of coral loss, resilience over decadal time scales, and cover of corals versus competing macroalgae. We also tested how corals responded to 2 common stressors—corallivory and macroalgal competition—and how this varied as a function of transplant location and the area of origin. Growth and survival of both coral species were affected by macroalgal competition, corallivory, transplant location, or some combination thereof, but we found limited evidence that the habitat of origin significantly impacted intraspecific performance. These results suggest that acclimatization capacity may outweigh local adaptation for these common reef-building species and could be leveraged to facilitate coral restoration. 
    more » « less
  2. Abstract Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod, Acartia tonsa , in future global change conditions (high temperature and high CO 2 ). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments. 
    more » « less
  3. Assessing within-species variation in response to drought is crucial for predicting species’ responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species’ responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited. 
    more » « less
  4. Marine organisms frequently inhabit intertidal zones that serve as refuges from predation and competition but are not optimal physiologically. Restoration practitioners working with intertidal species may similarly have to consider whether restoration success will be greater where conditions are more benign (usually lower in the intertidal) or where negative biotic interactions are reduced (usually higher in the intertidal). In cases where a target species has greater desiccation tolerance than its enemies, restoration may be more successful higher in the intertidal zone, despite potential performance trade-offs. In many US West Coast estuaries, non-native drill species can decimate native oyster populations, posing a challenge to restoration. Given that native Olympia oystersOstrea luridashould be better able to withstand tidal emersion than the non-native Atlantic oyster drillUrosalpinx cinerea, we explored using the high intertidal as a refuge from predation as a potential restoration technique. Using surveys and a field experiment, we investigated the recruitment, growth, and survival of oysters as well as drill abundance and predation over 3 tidal elevations. Oysters recruited and survived equally well at +0.1, +0.5, and +0.8 m mean lower low water, but juvenile oyster growth decreased with increasing elevation. In our experiment, predation on oysters was lower at the highest elevation than at low and mid elevations, but in natural populations there was a near complete absence ofO. luridaat any elevation whereU. cinereawas present. This suggests that a higher tidal elevation refuge is not a viable approach for oyster restoration in our study area. 
    more » « less
  5. Ecological restoration is emerging as an important strategy to improve the recovery of degraded lands and to combat habitat and biodiversity loss worldwide. One central unresolved question revolves around the optimal spatial design for outplanted propagules that maximizes restoration success. Essentially, two contrasting paradigms exist: the first aims to plant propagules in dispersed arrangements to minimize competitive interactions. In contrast, ecological theory and recent field experiments emphasize the importance of positive species interactions, suggesting instead clumped planting configurations. However, planting too many propagules too closely is likely to waste restoration resources as larger clumps have less edges and have relatively lower spread rates. Thus, given the constraint of limited restoration efforts, there should be an optimal planting distance that both is able to harness positive species interactions but at the same time maximizes spread in the treated area. To explore these ideas, here we propose a simple mathematical model that tests the influence of positive species interactions on the optimal design of restoration efforts. We model the growth and spatial spread of a population starting from different initial conditions that represent either clumped or dispersed configurations of planted habitat patches in bare substrate. We measure the spatio-temporal development of the population, its relative and absolute growth rates as well as the time-discounted population size and its dependence on the presence of an Allee effect. Finally, we assess whether clumped or dispersed configurations perform better in our models and qualitatively compare the simulation outcomes with a recent wetland restoration experiment in a coastal wetland. Our study shows that intermediate clumping is likely to maximize plant spread under medium and high stress conditions (high occurrence of positive interactions) while dispersed designs maximize growth under low stress conditions where competitive interactions dominate. These results highlight the value of mathematical modeling for optimizing the efficiency of restoration efforts and call for integration of this theory into practice. 
    more » « less