skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous micellar electrokinetic focusing of neutral species driven by ion concentration polarization
Ion concentration polarization (ICP) has been broadly applied to accomplish electrokinetic focusing of charged species. However, ICP-based extraction and enrichment of uncharged (neutral) compounds, important for pharmaceutical, biological, and environmental applications, has not yet been reported. Here, we report the ICP-based continuous extraction of two neutral compounds from aqueous solution, by their partition into an ionic micellar phase. Our initial results show that the efficiency of the extraction increases with the concentration of the surfactant comprising the micellar phase, reaching 98 ± 2%, and drops precipitously when the concentration of the target compound exceeds the capacity of the micelles. As a key feature relevant to the practical application of this method, we show that focusing occurs even an order of magnitude below the critical micelle concentration through the local enrichment and assembly of surfactants into micelles, thus minimizing their consumption. To underscore the relevance of this approach to water purification, this method is applied to the extraction of pyrene, a model for polyaromatic hydrocarbons. This approach provides access to a broad range of strategies for selective separation that have been developed in micellar electrokinetic chromatography.  more » « less
Award ID(s):
1849109
PAR ID:
10132189
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Lab on a Chip
Volume:
19
Issue:
13
ISSN:
1473-0197
Page Range / eLocation ID:
2233 to 2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ion concentration polarization (ICP) accomplishes preconcentration for bioanalysis by localized depletion of electrolyte ions, thereby generating a gradient in electric field strength that facilitates electrokinetic focusing of charged analytes by their electromigration against opposing fluid flow. Such ICP focusing has been shown to accomplish up to a million-fold enrichment of nucleic acids and proteins in single-stage preconcentrators. However, the rate at which the sample volume is swept is limited, requiring several hours to achieve these high enrichment factors. This limitation is caused by two factors. First, an ion depleted zone (IDZ) formed at a planar membrane or electrode may not extend across the full channel cross section under the flow rate employed for focusing, thereby allowing the analyte to “leak” past the IDZ. Second, within the IDZ, large fluid vortices lead to mixing, which decreases the efficiency of analyte enrichment and worsens with increased channel dimensions. Here, we address these challenges with faradaic ICP (fICP) at a three-dimensional (3D) electrode comprising metallic microbeads. This 3D-electrode distributes the IDZ, and therefore, the electric field gradient utilized for counter-flow focusing across the full height of the fluidic channel, and its large area, microstructured surface supports smaller vortices. An additional bed of insulating microbeads restricts flow patterns and supplies a large area for surface conduction of ions through the IDZ. Finally, the resistance of this secondary bed enhances focusing by locally strengthening sequestering forces. This easy-to-build platform lays a foundation for the integration of enrichment with user-defined packed bed and electrode materials. 
    more » « less
  2. Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst). 
    more » « less
  3. We report experiments on flow of wormlike micellar solutions past a falling sphere. By increasing the salt-to-surfactant concentration ratio, and beyond a viscosity peak, wormlike micelles experience a transition from linear to branched microstructure. Two viscoelastic wormlike micelles with salt to surfactant concentrations on each side of the viscosity peak are considered. Our results indicate three significant differences in flows of branched and linear micelles. First, while the sphere drag correction factor rapidly decreases upon increasing Weissenberg number in linear micelles, it shows an apparent local maximum at Wi ≈ 3 in branched micelles. Second, despite its high viscoelasticity, the time-averaged flow of branched micelles around the falling sphere exhibits a fore-and-aft symmetry, while a strong negative wake is observed in linear micelles at relatively weaker flows. Third, branched micelles exhibit a stronger flow-induced birefringence than linear micelles in an otherwise identical condition. Our hypothesis is that subject to strong flows around the falling sphere, branched micelles can relax much more efficiently than linear wormlike micelles through sliding of the branched junctions. This additional stress relaxation mechanism may facilitate micellar orientation, produce a marginal sphere drag reduction and a Newtonian-like flow profile around the falling sphere. Finally, unsteady flow is observed in both linear and branched micellar solutions beyond some critical thresholds of the extensional Weissenber number. Our results corroborate a recently proposed criterion for onset of instability in flow of wormlike micelles past a falling sphere, thereby, suggesting that micellar branching does not affect the mechanism of flow instability. 
    more » « less
  4. null (Ed.)
    Surface active per- and polyfluoroalkyl substances (PFAS) released in the environment generate great concern in the US and worldwide. The sequestration of PFAS amphiphiles from aqueous media can be limited by their strong tendency to form micelles that plug the pores in the adsorbent material, rendering most of the active surface inaccessible. A joint experimental and simulation approach has been used to investigate the structure of perfluorooctanoate ammonium (PFOA) micelles in aqueous solutions, focusing on the understanding of ethanol addition on PFOA micelle formation and structure. Structurally compact and slightly ellipsoidal in shape, PFOA micelles in pure water become more diffuse with increasing ethanol content, and break into smaller PFOA clusters in aqueous solutions with high ethanol concentration. A transition from a co-surfactant to a co-solvent behavior with the increase of ethanol concentration has been observed by both experiments and simulations, while the latter also provide insight on how to achieve co-solvent conditions with other additives. An improved understanding of how to modulate PFAS surfactant self-assembly in water can inform the fate and transport of PFAS in the environment and the PFAS sequestration from aqueous media. 
    more » « less
  5. null (Ed.)
    The wide spread use of hazardous and expensive solvents for the liquid–liquid extraction (LLE) of critical metals has been a growing source of waste in the metal refinement industry. We have developed and characterized room temperature liquid hydrophobic binary mixtures based on common pharmaceutical and food grade compounds as sustainable, cost effective alternatives to both ionic liquids and conventional solvents. Additionally, we introduce liquid mixtures with Proton Sponge® (1,8-bis(dimethylamino)naphthalene), one of the strongest known organic bases. These mixtures have been applied to the LLE of indium( iii ) ions from hydrochloric acid solutions, displaying an extraction efficiency greater than 99% in some systems. A systematic approach to identifying the underlying mechanism of extraction, in particular relating to the charge, solubility, and complexation of the indium species in the organic phase has been developed. 
    more » « less