- Award ID(s):
- 1847138
- Publication Date:
- NSF-PAR ID:
- 10135990
- Journal Name:
- 2019 IEEE MTT-S International Microwave Symposium (IMS)
- Page Range or eLocation-ID:
- 1107 to 1110
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Objective: Flexible Electrocorticography (ECoG) electrode arrays that conform to the cortical surface and record surface field potentials from multiple brain regions provide unique insights into how computations occurring in distributed brain regions mediate behavior. Specialized microfabrication methods are required to produce flexible ECoG devices with high-density electrode arrays. However, these fabrication methods are challenging for scientists without access to cleanroom fabrication equipment. Results: Here we present a fully desktop fabricated flexible graphene ECoG array. First, we synthesized a stable, conductive ink via liquid exfoliation of Graphene in Cyrene. Next, we established a stencil-printing process for patterning the graphene ink via laser-cut stencils on flexible polyimide substrates. Benchtop tests indicate that the graphene electrodes have good conductivity of ∼1.1 × 10 3 S cm −1 , flexibility to maintain their electrical connection under static bending, and electrochemical stability in a 15 d accelerated corrosion test. Chronically implanted graphene ECoG devices remain fully functional for up to 180 d, with average in vivo impedances of 24.72 ± 95.23 kΩ at 1 kHz. The ECoG device can measure spontaneous surface field potentials from mice under awake and anesthetized states and sensory stimulus-evoked responses. Significance: The stencil-printing fabrication process can be used tomore »
-
We present a novel fabrication technique for large-scale, on-wafer graphene devices. With the proposed technique, large-area graphene apertures can be fabricated, enabling the proliferation of graphene-based reconfigurable devices, including metasurfaces. Such topologies require large-area high yield fabrication processes. To avoid graphene delamination during the chemical processes of the fabrication, we use a titanium sacrificial layer to protect the graphene monolayer. To evaluate the fabrication method, we present broadband in-plane graphene measurements in the 220-330 GHz band for the first time and compare the measured resistance sheet with previous works.
-
Abstract The proliferation of van der Waals (vdW) heterostructures formed by stacking layered materials can accelerate scientific and technological advances. Here, we report a strategy for constructing vdW heterostructures through the interface engineering of the exfoliation substrate using a sub-5 nm polymeric film. Our construction method has two main features that distinguish it from existing techniques. First is the consistency of its exfoliation process in increasing the yield and in producing large (>10,000 μm2) monolayer graphene. Second is the applicability of its layer transfer process to different layered materials without requiring a specialized stamp—a feature useful for generalizing the assembly process. We demonstrate vdW graphene devices with peak carrier mobility of 200,000 and 800,000 cm2V−1s−1at room temperature and 9 K, respectively. The simplicity of our construction method and its versatility to different layered materials may open doors for automating the fabrication process of vdW heterostructures.
-
Scalable graphene synthesis and facile large-area membrane fabrication are imperative to advance nanoporous atomically thin membranes (NATMs) for molecular separations. Although chemical vapor deposition (CVD) allows for roll-to-roll high-quality monolayer graphene synthesis, facile transfer with atomically clean interfaces to porous supports for large-area NATM fabrication remains extremely challenging. Sacrificial polymer scaffolds commonly used for graphene transfer typically leave polymer residues detrimental to membrane performance and transfers without polymer scaffolds suffer from low yield resulting in high non-selective leakage through NATMs. Here, we systematically study the factors influencing graphene NATM fabrication and report on a novel roll-to-roll manufacturing compatible isopropanol-assisted hot lamination (IHL) process that enables scalable, facile and clean transfer of CVD graphene on to polycarbonate track etched (PCTE) supports with coverage ≥99.2%, while preserving support integrity/porosity. We demonstrate fully functional centimeter-scale graphene NATMs that show record high permeances (∼2–3 orders of magnitude higher) and better selectivity than commercially available state-of-the-art polymeric dialysis membranes, specifically in the 0–1000 Da range. Our work highlights a scalable approach to fabricate graphene NATMs for practical applications and is fully compatible with roll-to-roll manufacturing processes.
-
Emerging wearable devices are very attractive and promising in biomedical and healthcare fields because of their biocompatibility for monitoring in situ biomarker-associated signals and external stimulus. Many such devices or systems demand microscale sensors fabricated on curved and flexible hydrogel substrates. However, fabrication of microstructures on such substrates is still challenging because the traditional planar lithography process is not compatible with curved, flexible, and hydrated substrates. Here, we present a shadow-mask-assisted deposition process capable of directly generating metallic microstructures on the curved hydrogel substrate, specifically the contact lens, one of the most popular hydrogel substrates for wearable biomedical applications. In this process, the curved hydrogel substrate is temporarily flattened on a planar surface and metal features are deposited on this substrate through a shadow mask. To achieve a high patterning fidelity, we have experimentally and theoretically investigated various types of distortion due to wrinkles on 3D-printed sample holders, geometric distortion of the substrate due to the flattening process, and volume change of the hydrogel material during the dehydration and hydration processes of the contact lens. Using this method, we have demonstrated fabrication of various titanium pattern arrays on contact lenses with high fidelity and yield.