skip to main content

Title: Interacting young M-dwarfs in triple system – Par 1802 binary system case study
ABSTRACT The binary star Par 1802 in the Orion Nebula presents an interesting puzzle in the field of stellar dynamics and evolution. Binary systems such as Par 1802 are thought to form from the same natal material and thus the stellar members are expected to have very similar physical attributes. However, Par 1802’s stars have significantly different temperatures despite their identical (within $3\, {\rm per\, cent}$) masses of about 0.39 M⊙. The leading proof-of-concept idea is that a third companion gravitationally induced the two stars to orbit closer than their Roche limit, which facilitated heating through tidal effects. Here we expand on this idea and study the three-body dynamical evolution of such a system, including tidal and pre-main-sequence evolution. We also include tidal heating and mass transfer at the onset of Roche limit crossing. We show, as a proof-of-concept, that mass transfer combined with tidal heating can naturally explain the observed temperature discrepancy. We also predict the orbital configuration of the possible tertiary companion. Finally, we suggest that the dynamical evolution of such a system has pervasive consequences. We expect an abundance of systems to undergo mass transfer during their pre-main-sequence time, which can cause temperature differences.
; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
2298 to 2306
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $10\, {\rm M}_{\odot }$ ($15\, {\rm M}_{\odot }$) primary star interacting with a $1.4\, {\rm M}_{\odot }$ companion, systems with pericentre distances within 3 au (6 au) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even inmore »systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common-envelope eccentricity on the resulting compact binary merit further study.« less

    Tidal evolution of eccentric binary systems containing at least one massive main-sequence (MS) star plays an important role in the formation scenarios of merging compact-object binaries. The dominant dissipation mechanism in such systems involves tidal excitation of outgoing internal gravity waves at the convective-radiative boundary and dissipation of the waves at the stellar envelope/surface. We have derived analytical expressions for the tidal torque and tidal energy transfer rate in such binaries for arbitrary orbital eccentricities and stellar rotation rates. These expressions can be used to study the spin and orbital evolution of eccentric binaries containing massive MS stars, such as the progenitors of merging neutron star binaries. Applying our results to the PSR J0045-7319 system, which has a massive B-star companion and an observed, rapidly decaying orbit, we find that for the standard radius of convective core based on non-rotating stellar models, the B-star must have a significant retrograde and differential rotation in order to explain the observed orbital decay rate. Alternatively, we suggest that the convective core may be larger as a result of rapid stellar rotation and/or mass transfer to the B-star in the recent past during the post-MS evolution of the pulsar progenitor.

  3. Thermonuclear Supernovae (SNe Ia) are one of the building blocks of modern cosmology and laboratories for the explosion physics of White Dwarf star/s (WD) in close binary systems. The second star may be aWD(double degenerate systems, DD), or a non-degenerated star (SD) with a main sequence star, red giant or a helium star as companion (Branch et al. 1995; Nomoto et al. 2003; Wang & Han 2012). Light curves and spectra of the explosion look similar because a ’stellar amnesia’ (H¨oflich et al. 2006). Basic nuclear physics determines the progenitor structure and the explosion physics, breaking the link between progenitor evolution, and the explosion, resulting in three main classes of explosion scenarios: a) dynamical merging of two WD and a heating on time scales of seconds (Webbink 1984; Isern et al. 2011), b) surface helium detonations on top of a WD which ignite the central C/O by a detonation wave traveling inwards (Nomoto 1982; Hoeflich & Khokhlov 1996; Kromer et al. 2010); c) compressional heating in an accreting WD approaching the Chandrasekar mass on time of up to 108 years which may originated from SD and DD systems (Whelan & Iben 1973; Piersanti et al. 2003). Simulations of the explosionsmore »depend on the inital conditions at the onset of the explosions, namely the mass and angular momentum of the WD(s). For all scenarios, diversity in SNe Ia must be expected because the WD originates from a range of Main Sequence masses (MMS < 8M ) and metallicities Z. Moreover, there is growing evidence that magnetic fields B may have to be added to the ’mix’. Only with recent advances in observations ranging from X-ray to radio, high precision spectroscopy, polarimetry and photometry and in the time-domain astronomy we obtain constraints for progenitor, on the explosion scenarios and links emerge between the progenitors and their environment with LCs and spectral signatures needed for high precision cosmology. It is too early to give final answers but we present our personal view. We will give some examples from the theory point of view and discuss future prospects with upcoming ground based, ELT, GMT and space based such as JWST, Euclide and WFIRST instruments.« less

    We measure rotational broadening in spectra taken by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to characterize the relationship between stellar multiplicity and rotation. We create a sample of 2786 giants and 24 496 dwarfs with stellar parameters and multiple radial velocities from the APOGEE pipeline, projected rotation speeds vsin i determined from our own pipeline, and distances, masses, and ages measured by Sanders & Das. We use the statistical distribution of the maximum shift in the radial velocities, ΔRVmax, as a proxy for the close binary fraction to explore the interplay between stellar evolution, rotation, and multiplicity. Assuming that the minimum orbital period allowed is the critical period for Roche Lobe overflow and rotational synchronization, we calculate theoretical upper limits on expected vsin i and ΔRVmax values. These expectations agree with the positive correlation between the maximum ΔRVmax and vsin i values observed in our sample as a function of log(g). We find that the fast rotators in our sample have a high occurrence of short-period [log(P/d) ≲ 4] companions. We also find that old, rapidly rotating main-sequence stars have larger completeness-corrected close binary fractions than their younger peers. Furthermore, rapidly rotating stars with large ΔRVmax consistently show differences of 1–10 Gyrmore »between the predicted gyrochronological and measured isochronal ages. These results point towards a link between rapid rotation and close binarity through tidal interactions. We conclude that stellar rotation is strongly correlated with stellar multiplicity in the field, and caution should be taken in the application of gyrochronology relations to cool stars.

    « less
  5. ABSTRACT At least $70\, {\rm per\, cent}$ of massive OBA-type stars reside in binary or higher order systems. The dynamical evolution of these systems can lend insight into the origins of extreme phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical process, the Eccentric Kozai–Lidov (EKL) mechanism, a third companion star alters the secular evolution of a binary system. For dynamical stability, these triple systems must have a hierarchical configuration. We explore the effects of a distant third companion’s gravitational perturbations on a massive binary’s orbital configuration before significant stellar evolution has taken place (≤10 Myr). We include tidal dissipation and general relativistic precession. With large (38 000 total) Monte Carlo realizations of massive hierarchical triples, we characterize imprints of the birth conditions on the final orbital distributions. Specifically, we find that the final eccentricity distribution over the range of 0.1–0.7 is an excellent indicator of its birth distribution. Furthermore, we find that the period distributions have a similar mapping for wide orbits. Finally, we demonstrate that the observed period distribution for approximately 10-Myr-old massive stars is consistent with EKL evolution.