Title: Balancing unevenly distributed data in seismic tomography: a global adjoint tomography example
SUMMARY The uneven distribution of earthquakes and stations in seismic tomography leads to slower convergence of nonlinear inversions and spatial bias in inversion results. Including dense regional arrays, such as USArray or Hi-Net, in global tomography causes severe convergence and spatial bias problems, against which conventional pre-conditioning schemes are ineffective. To save computational cost and reduce model bias, we propose a new strategy based on a geographical weighting of sources and receivers. Unlike approaches based on ray density or the Voronoi tessellation, this method scales to large full-waveform inversion problems and avoids instabilities at the edges of dense receiver or source clusters. We validate our strategy using a 2-D global waveform inversion test and show that the new weighting scheme leads to a nearly twofold reduction in model error and much faster convergence relative to a conventionally pre-conditioned inversion. We implement this geographical weighting strategy for global adjoint tomography. more »« less
Xu, Zongbo; Mikesell, T Dylan; Umlauft, Josefine; Gribler, Gabriel
(, Geophysical Journal International)
null
(Ed.)
SUMMARY Estimation of ambient seismic source distributions (e.g. location and strength) can aid studies of seismic source mechanisms and subsurface structure investigations. One can invert for the ambient seismic (noise) source distribution by applying full-waveform inversion (FWI) theory to seismic (noise) crosscorrelations. This estimation method is especially applicable for seismic recordings without obvious body-wave arrivals. Data pre-processing procedures are needed before the inversion, but some pre-processing procedures commonly used in ambient noise tomography can bias the ambient (noise) source distribution estimation and should not be used in FWI. Taking this into account, we propose a complete workflow from the raw seismic noise recording through pre-processing procedures to the inversion. We present the workflow with a field data example in Hartoušov, Czech Republic, where the seismic sources are CO2 degassing areas at Earth’s surface (i.e. a fumarole or mofette). We discuss factors in the processing and inversion that can bias the estimations, such as inaccurate velocity model, anelasticity and array sensitivity. The proposed workflow can work for multicomponent data across different scales of field data.
SUMMARY We use source-encoded waveform inversion to image Earth’s Northern Hemisphere. The encoding method is based on measurements of Laplace coefficients of stationary wavefields. By assigning to each event a unique frequency, we compute Fréchet derivatives for all events simultaneously based on one ‘super’ forward and one ‘super’ adjoint simulation for a small fraction of the computational cost of classical waveform inversion with the same data set. No cross-talk noise is introduced in the process, and the method does not require all events to be recorded by all stations. Starting from global model GLAD_M25, we performed 100 conjugate gradient iterations using a data set consisting of 786 earthquakes recorded by 9846 stations. Synthetic inversion tests show that we achieve good convergence based on this data set, and we see a consistent misfit reduction during the inversion. The new model, named SE100, has much higher spatial resolution than GLAD_M25, revealing details of the Yellowstone and Iceland hotspots, subduction beneath the Western United States and the upper mantle structure beneath the Arctic Ocean.
Romanowicz, Barbara; Chen, Li-Wei; French, Scott W.
(, Geophysical Journal International)
SUMMARY Accurate synthetic seismic wavefields can now be computed in 3-D earth models using the spectral element method (SEM), which helps improve resolution in full waveform global tomography. However, computational costs are still a challenge. These costs can be reduced by implementing a source stacking method, in which multiple earthquake sources are simultaneously triggered in only one teleseismic SEM simulation. One drawback of this approach is the perceived loss of resolution at depth, in particular because high-amplitude fundamental mode surface waves dominate the summed waveforms, without the possibility of windowing and weighting as in conventional waveform tomography. This can be addressed by redefining the cost-function and computing the cross-correlation wavefield between pairs of stations before each inversion iteration. While the Green’s function between the two stations is not reconstructed as well as in the case of ambient noise tomography, where sources are distributed more uniformly around the globe, this is not a drawback, since the same processing is applied to the 3-D synthetics and to the data, and the source parameters are known to a good approximation. By doing so, we can separate time windows with large energy arrivals corresponding to fundamental mode surface waves. This opens the possibility of designing a weighting scheme to bring out the contribution of overtones and body waves. It also makes it possible to balance the contributions of frequently sampled paths versus rarely sampled ones, as in more conventional tomography. Here we present the results of proof of concept testing of such an approach for a synthetic 3-component long period waveform data set (periods longer than 60 s), computed for 273 globally distributed events in a simple toy 3-D radially anisotropic upper mantle model which contains shear wave anomalies at different scales. We compare the results of inversion of 10 000 s long stacked time-series, starting from a 1-D model, using source stacked waveforms and station-pair cross-correlations of these stacked waveforms in the definition of the cost function. We compute the gradient and the Hessian using normal mode perturbation theory, which avoids the problem of cross-talk encountered when forming the gradient using an adjoint approach. We perform inversions with and without realistic noise added and show that the model can be recovered equally well using one or the other cost function. The proposed approach is computationally very efficient. While application to more realistic synthetic data sets is beyond the scope of this paper, as well as to real data, since that requires additional steps to account for such issues as missing data, we illustrate how this methodology can help inform first order questions such as model resolution in the presence of noise, and trade-offs between different physical parameters (anisotropy, attenuation, crustal structure, etc.) that would be computationally very costly to address adequately, when using conventional full waveform tomography based on single-event wavefield computations.
Kleman, Christopher; Anwar, Shoaib; Liu, Zhengchun; Gong, Jiaqi; Zhu, Xishi; Yunker, Austin; Kettimuthu, Rajkumar; He, Jiaze
(, Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems)
Abstract Ultrasound computed tomography (USCT) shows great promise in nondestructive evaluation and medical imaging due to its ability to quickly scan and collect data from a region of interest. However, existing approaches are a tradeoff between the accuracy of the prediction and the speed at which the data can be analyzed, and processing the collected data into a meaningful image requires both time and computational resources. We propose to develop convolutional neural networks (CNNs) to accelerate and enhance the inversion results to reveal underlying structures or abnormalities that may be located within the region of interest. For training, the ultrasonic signals were first processed using the full waveform inversion (FWI) technique for only a single iteration; the resulting image and the corresponding true model were used as the input and output, respectively. The proposed machine learning approach is based on implementing two-dimensional CNNs to find an approximate solution to the inverse problem of a partial differential equation-based model reconstruction. To alleviate the time-consuming and computationally intensive data generation process, a high-performance computing-based framework has been developed to generate the training data in parallel. At the inference stage, the acquired signals will be first processed by FWI for a single iteration; then the resulting image will be processed by a pre-trained CNN to instantaneously generate the final output image. The results showed that once trained, the CNNs can quickly generate the predicted wave speed distributions with significantly enhanced speed and accuracy.
SUMMARY Differences between P- and S-wave models have been frequently used as evidence for the presence of large-scale compositional heterogeneity in the Earth's mantle. Our two-step machine learning (ML) analysis of 28 P- and S-wave global tomographic models reveals that, on a global scale, such differences are for the most part not intrinsic and could be reduced by changing the models in their respective null spaces. In other words, P- and S-wave images of mantle structure are not necessarily distinct from each other. Thus, a purely thermal explanation for large-scale seismic structure is sufficient at present; significant mantle compositional heterogeneities do not need to be invoked. We analyse 28 widely used tomographic models based on various theoretical approximations ranging from ray theory (e.g. UU-P07 and MIT-P08), Born scattering (e.g. DETOX) and full-waveform techniques (e.g. CSEM and GLAD). We apply Varimax principal component analysis to reduce tomography model dimensionality by 83 percent, while preserving relevant information (94 percent of the original variance), followed by hierarchical clustering (HC) analysis using Ward's method to quantitatively categorize all models into hierarchical groups based on similarities. We found two main tomography model clusters: Cluster 1, which we called ‘Pure P wave’, is composed of six P-wave models that only use longitudinal body wave phases (e.g. P, PP and Pdiff); and Cluster 2, which we called ‘Mixed’, includes both P- and S-wave models. P-wave models in the ‘Mixed’ cluster use inversion methods that include inputs from other geophysical and geological data sources, and this causes them to be more similar to S-wave models than Pure P-wave models without significant loss of fitness to P-wave data. Given that inclusion of new data classes and seismic phases in more recent tomographic models significantly changes imaged seismic structure, our ML assessment of global tomography model similarity may improve selection of appropriate P- and S-wave models for future global tomography comparative studies.
Ruan, Youyi, Lei, Wenjie, Modrak, Ryan, Örsvuran, Rıdvan, Bozdağ, Ebru, and Tromp, Jeroen. Balancing unevenly distributed data in seismic tomography: a global adjoint tomography example. Retrieved from https://par.nsf.gov/biblio/10137268. Geophysical Journal International 219.2 Web. doi:10.1093/gji/ggz356.
Ruan, Youyi, Lei, Wenjie, Modrak, Ryan, Örsvuran, Rıdvan, Bozdağ, Ebru, and Tromp, Jeroen.
"Balancing unevenly distributed data in seismic tomography: a global adjoint tomography example". Geophysical Journal International 219 (2). Country unknown/Code not available. https://doi.org/10.1093/gji/ggz356.https://par.nsf.gov/biblio/10137268.
@article{osti_10137268,
place = {Country unknown/Code not available},
title = {Balancing unevenly distributed data in seismic tomography: a global adjoint tomography example},
url = {https://par.nsf.gov/biblio/10137268},
DOI = {10.1093/gji/ggz356},
abstractNote = {SUMMARY The uneven distribution of earthquakes and stations in seismic tomography leads to slower convergence of nonlinear inversions and spatial bias in inversion results. Including dense regional arrays, such as USArray or Hi-Net, in global tomography causes severe convergence and spatial bias problems, against which conventional pre-conditioning schemes are ineffective. To save computational cost and reduce model bias, we propose a new strategy based on a geographical weighting of sources and receivers. Unlike approaches based on ray density or the Voronoi tessellation, this method scales to large full-waveform inversion problems and avoids instabilities at the edges of dense receiver or source clusters. We validate our strategy using a 2-D global waveform inversion test and show that the new weighting scheme leads to a nearly twofold reduction in model error and much faster convergence relative to a conventionally pre-conditioned inversion. We implement this geographical weighting strategy for global adjoint tomography.},
journal = {Geophysical Journal International},
volume = {219},
number = {2},
author = {Ruan, Youyi and Lei, Wenjie and Modrak, Ryan and Örsvuran, Rıdvan and Bozdağ, Ebru and Tromp, Jeroen},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.