The generalized contrast-to-noise ratio (gCNR) is a relatively new image quality metric designed to assess the probability of lesion detectability in ultrasound images. Although gCNR was initially demonstrated with ultrasound images, the metric is theoretically applicable to multiple types of medical images. In this paper, the applicability of gCNR to photoacoustic images is investigated. The gCNR was computed for both simulated and experimental photoacoustic images generated by amplitude-based (i.e., delay-and-sum) and coherence-based (i.e., short-lag spatial coherence) beamformers. These gCNR measurements were compared to three more traditional image quality metrics (i.e., contrast, contrast-to-noise ratio, and signal-to-noise ratio) applied to the same datasets. An increase in qualitative target visibility generally corresponded with increased gCNR. In addition, gCNR magnitude was more directly related to the separability of photoacoustic signals from their background, which degraded with the presence of limited bandwidth artifacts and increased levels of channel noise. At high gCNR values (i.e., 0.95-1), contrast, contrast-to-noise ratio, and signal-to-noise ratio varied by up to 23.7-56.2 dB, 2.0-3.4, and 26.5-7.6×1020, respectively, for simulated, experimental phantom, andin vivodata. Therefore, these traditional metrics can experience large variations when a target is fully detectable, and additional increases in these values would have no impact on photoacoustic target detectability. In addition, gCNR is robust to changes in traditional metrics introduced by applying a minimum threshold to image amplitudes. In tandem with other photoacoustic image quality metrics and with a defined range of 0 to 1, gCNR has promising potential to provide additional insight, particularly when designing new beamformers and image formation techniques and when reporting quantitative performance without an opportunity to qualitatively assess corresponding images (e.g., in text-only abstracts). 
                        more » 
                        « less   
                    
                            
                            An improved training scheme for deep neural network ultrasound beamforming
                        
                    
    
            Deep neural networks have been shown to be effective adaptive beamformers for ultrasound imaging. However, when training with traditional L p norm loss functions, model selection is difficult because lower loss values are not always associated with higher image quality. This ultimately limits the maximum achievable image quality with this approach and raises concerns about the optimization objective. In an effort to align the optimization objective with the image quality metrics of interest, we implemented a novel ultrasound-specific loss function based on the spatial lag-one coherence and signal-to-noise ratio of the delayed channel data in the short-time Fourier domain. We employed the R-Adam optimizer with look ahead and cyclical learning rate to make the training more robust to initialization and local minima, leading to better model performance and more reliable convergence. With our custom loss function and optimization scheme, we achieved higher contrast-to-noise-ratio, higher speckle signal-to-noise-ratio, and more accurate contrast ratio reconstruction than with previous deep learning and delay-and-sum beamforming approaches. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750994
- PAR ID:
- 10138381
- Date Published:
- Journal Name:
- 2019 IEEE International Ultrasonics Symposium (IUS)
- Page Range / eLocation ID:
- 568 to 570
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a method to automatically synthesize efficient, high-quality demosaicking algorithms, across a range of computational budgets, given a loss function and training data. It performs a multi-objective, discrete-continuous optimization which simultaneously solves for the program structure and parameters that best tradeoff computational cost and image quality. We design the method to exploit domain-specific structure for search efficiency. We apply it to several tasks, including demosaicking both Bayer and Fuji X-Trans color filter patterns, as well as joint demosaicking and super-resolution. In a few days on 8 GPUs, it produces a family of algorithms that significantly improves image quality relative to the prior state-of-the-art across a range of computational budgets from 10 s to 1000 s of operations per pixel (1 dB–3 dB higher quality at the same cost, or 8.5–200× higher throughput at same or better quality). The resulting programs combine features of both classical and deep learning-based demosaicking algorithms into more efficient hybrid combinations, which are bandwidth-efficient and vectorizable by construction. Finally, our method automatically schedules and compiles all generated programs into optimized SIMD code for modern processors.more » « less
- 
            Most research on deep learning algorithms for image denoising has focused on signal-independent additive noise. Focused ion beam (FIB) microscopy with direct secondary electron detection has an unusual Neyman Type A (compound Poisson) measurement model, and sample damage poses fundamental challenges in obtaining training data. Model-based estimation is difficult and ineffective because of the nonconvexity of the negative log likelihood. In this paper, we develop deep learning-based denoising methods for FIB micrographs using synthetic training data generated from natural images. To the best of our knowledge, this is the first attempt in the literature to solve this problem with deep learning. Our results show that the proposed methods slightly outperform a total variation-regularized model-based method that requires time-resolved measurements that are not conventionally available. Improvements over methods using conventional measurements and less accurate noise modeling are dramatic - around 10 dB in peak signal-to-noise ratio.more » « less
- 
            Abstract BackgroundMagnetic resonance imaging (MRI) scans are known to suffer from a variety of acquisition artifacts as well as equipment‐based variations that impact image appearance and segmentation performance. It is still unclear whether a direct relationship exists between magnetic resonance (MR) image quality metrics (IQMs) (e.g., signal‐to‐noise, contrast‐to‐noise) and segmentation accuracy. PurposeDeep learning (DL) approaches have shown significant promise for automated segmentation of brain tumors on MRI but depend on the quality of input training images. We sought to evaluate the relationship between IQMs of input training images and DL‐based brain tumor segmentation accuracy toward developing more generalizable models for multi‐institutional data. MethodsWe trained a 3D DenseNet model on the BraTS 2020 cohorts for segmentation of tumor subregions enhancing tumor (ET), peritumoral edematous, and necrotic and non‐ET on MRI; with performance quantified via a 5‐fold cross‐validated Dice coefficient. MRI scans were evaluated through the open‐source quality control tool MRQy, to yield 13 IQMs per scan. The Pearson correlation coefficient was computed between whole tumor (WT) dice values and IQM measures in the training cohorts to identify quality measures most correlated with segmentation performance. Each selected IQM was used to group MRI scans as “better” quality (BQ) or “worse” quality (WQ), via relative thresholding. Segmentation performance was re‐evaluated for the DenseNet model when (i) training on BQ MRI images with validation on WQ images, as well as (ii) training on WQ images, and validation on BQ images. Trends were further validated on independent test sets derived from the BraTS 2021 training cohorts. ResultsFor this study, multimodal MRI scans from the BraTS 2020 training cohorts were used to train the segmentation model and validated on independent test sets derived from the BraTS 2021 cohort. Among the selected IQMs, models trained on BQ images based on inhomogeneity measurements (coefficient of variance, coefficient of joint variation, coefficient of variation of the foreground patch) and the models trained on WQ images based on noise measurement peak signal‐to‐noise ratio (SNR) yielded significantly improved tumor segmentation accuracy compared to their inverse models. ConclusionsOur results suggest that a significant correlation may exist between specific MR IQMs and DenseNet‐based brain tumor segmentation performance. The selection of MRI scans for model training based on IQMs may yield more accurate and generalizable models in unseen validation.more » « less
- 
            null (Ed.)Deep learning holds a great promise of revolutionizing healthcare and medicine. Unfortunately, various inference attack models demonstrated that deep learning puts sensitive patient information at risk. The high capacity of deep neural networks is the main reason behind the privacy loss. In particular, patient information in the training data can be unintentionally memorized by a deep network. Adversarial parties can extract that information given the ability to access or query the network. In this paper, we propose a novel privacy-preserving mechanism for training deep neural networks. Our approach adds decaying Gaussian noise to the gradients at every training iteration. This is in contrast to the mainstream approach adopted by Google's TensorFlow Privacy, which employs the same noise scale in each step of the whole training process. Compared to existing methods, our proposed approach provides an explicit closed-form mathematical expression to approximately estimate the privacy loss. It is easy to compute and can be useful when the users would like to decide proper training time, noise scale, and sampling ratio during the planning phase. We provide extensive experimental results using one real-world medical dataset (chest radiographs from the CheXpert dataset) to validate the effectiveness of the proposed approach. The proposed differential privacy based deep learning model achieves significantly higher classification accuracy over the existing methods with the same privacy budget.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    