Abstract We investigate the dynamics of two quantum mechanical oscillator system–bath toy models obtained by truncating to zero spatial dimensions linearized gravity coupled to a massive scalar field and scalar quantum electrodynamics (QED). The scalar-gravity toy model maps onto the phase damped oscillator, while the scalar QED toy model approximately maps onto an oscillator system subject to two-photon damping. The toy models provide potentially useful insights into solving for open system quantum dynamics relevant to the full scalar QED and weak gravitational field systems, in particular operational probes of the decoherence for initial scalar field system superposition states.
more »
« less
Transition between coherent and incoherent chirping mechanisms in electron-positron pair creation
We examine the effect of a frequency-chirped external force field on the final energy that has been absorbed by two classical mechanical oscillators, by quantum mechanical two- and three-level systems, and by electron-positron pairs that were created from the quantum field theoretical Dirac vacuum. By comparing the final dynamical responses to the original force field with that associated with the corresponding time-reversed field, we can test the sensitivity of each of these five systems to the temporal phase information contained in the field. We predict that the linear oscillator, the two-level atom, and the pair-creation process triggered by a spatially homogeneous field are remarkably immune to this phase, whereas the quartic oscillator, the three-level atom, or the pair-creation process caused by a space-time field absorb the provided energy differently depending on the temporal details of the external field.
more »
« less
- Award ID(s):
- 1803226
- PAR ID:
- 10139473
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America B
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 0740-3224; JOBPDE
- Format(s):
- Medium: X Size: Article No. 1098
- Size(s):
- Article No. 1098
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Quantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 87 Rb Bose–Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices.more » « less
-
Abstract The ability to cool quantum gases into the quantum degenerate realm has opened up possibilities for an extreme level of quantum-state control. In this paper, we investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose–Einstein condensate by the periodic modulation of the two-bodys-wave scattering length. This shows a capability to selectively amplify quantum fluctuations with a predetermined momentum, where the momentum value can be spectroscopically tuned. A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal in nonlinear optics. For this reason, it may be anticipated that the evolution will generate a ‘squeezed’ matter-wave state in the quasiparticle mode on resonance with the modulation frequency. Our model and analysis is motivated by a recent experiment by Clarket althat observed a time-of-flight pattern similar to an exploding firework (Clarket al2017Nature551356–9). Since the drive is a highly coherent process, we interpret the observed firework patterns as arising from a monotonic growth in the two-body correlation amplitude, so that the jets should contain correlated atom pairs with nearly equal and opposite momenta. We propose a potential future experiment based on applying Ramsey interferometry to experimentally probe these pair correlations.more » « less
-
Abstract We study spin dynamics and quantum magnetism with ultracold highly-magnetic atoms. In particular, we focus on the interactions among rare-earth atoms localized in a site of an optical-lattice potential, modeled as a cylindrically symmetric harmonic oscillator in the presence of a weak external magnetic field. The interactions between the atoms are modeled using a multi-channel Hamiltonian containing multiple spin–spin and anisotropic spin–orbit interactions with strengths that depend on the separation between the atoms. We studied the eigenenergies of the atom pair in a site for different lattice geometries and magnetic field strengths. In parallel, we compared these energies to those found from a simplified approach, where the complex-collisional physics is replaced by a two-length-scale pseudopotential containing the contact and magnetic dipole–dipole interactions. The eigenenergies of this model can be computed analytically within the Born approximation as well as non-perturbatively for strong contact interactions. We have shown that the pseudopotential model can accurately represent the multi-channel Hamiltonian in certain parameter regimes of the shape of the site of an optical lattice. The pseudopotential forms the starting point for many-body, condensed matter simulations involving many atom pairs in different sites of an optical lattice.more » « less
-
Abstract The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+spins (Fe3+magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.more » « less
An official website of the United States government
