Trellis based detection with pattern dependent noise prediction (PDNP) has become standard practice in the HDD industry. In a typical single-track signal processing scheme, the received samples from the read head are first filtered by a linear equalizer with a 1D partial response (PR). The linear filter output flows into a trellis-based (e.g. BCJR) detector that employs a super-trellis based on the PR mask ISI channel and a 1D pattern dependent noise prediction (1D PDNP) algorithm. The effective channel model has a media noise term which models signal dependent noise due to, e.g., magnetic grains intersected by bit boundaries. The media noise can influence two or more bit readback values. The trellis detector sends soft estimates of the coded bits to a channel decoder, which outputs estimates of the user information bits. There are two problems with traditional PDNP. First, when the number of tracks Nt simultaneously processed is greater than one, e.g. in two-dimensional magnetic recording (TDMR), the number of trellis states can become impractically large; this is the state explosion problem. Second, the relatively simple autoregressive noise model and linear prediction used in PDNP is somewhat restrictive and may not accurately represent the media noise, especially at high storage densities; this is the modeling problem. To address the state explosion problem, we separate the ISI detection and media noise prediction into two separate detectors and use the turbo-principle to exchange information between them, thus avoiding use of a super-trellis. To address the modeling problem, we design and train deep neural network (DNN) based media noise predictors. As DNN models are much more general than autoregressive models, they give a more accurate model of magnetic media noise than PDNP; this more accurate modeling results in reduced detector BERs compared to PDNP.
more »
« less
The Geometry of Community Detection via the MMSE Matrix
The information-theoretic limits of community detection have been studied extensively for network models with high levels of symmetry or homogeneity. The contribution of this paper is to study a broader class of network models that allow for variability in the sizes and behaviors of the different communities, and thus better reflect the behaviors observed in real-world networks. Our results show that the ability to detect communities can be described succinctly in terms of a matrix of effective signal-to-noise ratios that provides a geometrical representation of the relationships between the different communities. This characterization follows from a matrix version of the I-MMSE relationship and generalizes the concept of an effective scalar signal-to-noise ratio introduced in previous work. We provide explicit formulas for the asymptotic per-node mutual information and upper bounds on the minimum mean-squared error. The theoretical results are supported by numerical simulations.
more »
« less
- Award ID(s):
- 1750362
- PAR ID:
- 10139964
- Date Published:
- Journal Name:
- 2019 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 400 to 404
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We provide a non-asymptotic analysis of the spiked Wishart and Wigner matrix models with a generative neural network prior. Spiked random matrices have the form of a rank-one signal plus noise and have been used as models for high dimensional Principal Component Analysis (PCA), community detection and synchronization over groups. Depending on the prior imposed on the spike, these models can display a statistical-computational gap between the information theoretically optimal reconstruction error that can be achieved with unbounded computational resources and the sub-optimal performances of currently known polynomial time algorithms. These gaps are believed to be fundamental, as in the emblematic case of Sparse PCA. In stark contrast to such cases, we show that there is no statistical-computational gap under a generative network prior, in which the spike lies on the range of a generative neural network. Specifically, we analyze a gradient descent method for minimizing a nonlinear least squares objective over the range of an expansive-Gaussian neural network and show that it can recover in polynomial time an estimate of the underlying spike with a rate-optimal sample complexity and dependence on the noise level.more » « less
-
Public emergencies pose catastrophic casualties and financial losses in densely populated areas, rendering communities such as cities, towns, and universities particularly susceptible due to their intricate environments and high pedestrian traffic. While simulation analysis offers a flexible and cost-effective approach to evaluating evacuation procedures, conventional evacuation models are often limited to specific scenarios and communities, overlooking the diverse range of emergencies and evacuee behaviors. Thus, there is an urgent need for an evacuation model capable of capturing complex structures of communities and modeling evacuee responses to various emergencies. This paper presents a novel approach to simulating responsive evacuation behaviors for multiple emergency situations in public communities through spatial network modeling and multi-agent modeling. Leveraging a community network framework adaptable to different community layouts based on map data, the proposed model employs a multi-agent approach to characterize responsive and decentralized evacuation decision-making. Experimental results show the model’s efficacy in representing pedestrian flow and pedestrians’ reactive behavior across various campuses based on real-world map data. Additionally, the case study highlights the potential of the proposed model to simulate pedestrian dynamics for a variety of heterogeneous emergencies. The proposed community evacuation model holds strong promise for evaluating evacuation policies and providing insights into resilient plans during public emergencies, thereby enhancing community safety.more » « less
-
null (Ed.)Acoustic ranging is a technique for estimating the distance between two objects using acoustic signals, which plays a critical role in many applications, such as motion tracking, gesture/activity recognition, and indoor localization. Although many ranging algorithms have been developed, their performance still degrades significantly under strong noise, interference and hardware limitations. To improve the robustness of the ranging system, in this paper we develop a Deep learning based Ranging system, called DeepRange. We first develop an effective mechanism to generate synthetic training data that captures noise, speaker/mic distortion, and interference in the signals and remove the need of collecting a large volume of training data. We then design a deep range neural network (DRNet) to estimate distance. Our design is inspired by signal processing that ultra-long convolution kernel sizes help to combat the noise and interference. We further apply an ensemble method to enhance the performance. Moreover, we analyze and visualize the network neurons and filters, and identify a few important findings that can be useful for improving the design of signal processing algorithms. Finally, we implement and evaluate DeepRangeusing 11 smartphones with different brands and models, 4 environments (i.e., a lab, a conference room, a corridor, and a cubic area), and 10 users. Our results show that DRNet significantly outperforms existing ranging algorithms.more » « less
-
null (Ed.)Generative neural networks have been empirically found very promising in providing effective structural priors for compressed sensing, since they can be trained to span low-dimensional data manifolds in high-dimensional signal spaces. Despite the non-convexity of the resulting optimization problem, it has also been shown theoretically that, for neural networks with random Gaussian weights, a signal in the range of the network can be efficiently, approximately recovered from a few noisy measurements. However, a major bottleneck of these theoretical guarantees is a network expansivity condition: that each layer of the neural network must be larger than the previous by a logarithmic factor. Our main contribution is to break this strong expansivity assumption, showing that constant expansivity suffices to get efficient recovery algorithms, besides it also being information-theoretically necessary. To overcome the theoretical bottleneck in existing approaches we prove a novel uniform concentration theorem for random functions that might not be Lipschitz but satisfy a relaxed notion which we call "pseudo-Lipschitzness." Using this theorem we can show that a matrix concentration inequality known as the Weight Distribution Condition (WDC), which was previously only known to hold for Gaussian matrices with logarithmic aspect ratio, in fact holds for constant aspect ratios too. Since the WDC is a fundamental matrix concentration inequality in the heart of all existing theoretical guarantees on this problem, our tighter bound immediately yields improvements in all known results in the literature on compressed sensing with deep generative priors, including one-bit recovery, phase retrieval, low-rank matrix recovery, and more.more » « less
An official website of the United States government

