Abstract Although the 16S (and 18S) rRNA gene has been an essential tool in classifying prokaryotes, using a single locus to revise bacteria taxonomy can introduce unwanted artifacts. There was a recent proposition to split the Methylobacterium genus, which contains diverse plant-associated strains and is important for agriculture and biotechnology, into two genera. Resting strongly on the phylogeny of 16S rRNA, 11 species of Methylobacterium were transferred to a newly proposed genus Methylorubrum. Numerous recent studies have independently questioned Methylorubrum as a valid genus, but the prior revision has left discrepancies among taxonomic databases. Here, we review phylogenomic and phenotypic evidence against Methylorubrum as a genus and call for its abandonment. Because Methylobacterium sensu lato forms a consistent and monophyletic genus, we argue for the restoration of the former and consensual Methylobacterium taxonomy. The large genomic, phenotypic, and ecological diversity within Methylobacterium however suggests complex evolutionary and adaptive processes and support the description of the most basal clade of Methylobacterium (group C) as a distinct genus in future work. Overall, this perspective demonstrates the danger of solely relying upon the 16S rRNA gene as a delimiter of genus level taxonomy and that further attempts must include more robust phenotypic and phylogenomic criteria. 
                        more » 
                        « less   
                    
                            
                            A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index
                        
                    
    
            ABSTRACT Genus assignment is fundamental in the characterization of microbes, yet there is currently no unambiguous way to demarcate genera solely using standard genomic relatedness indices. Here, we propose an approach to demarcate genera that relies on the combined use of the average nucleotide identity, genome alignment fraction, and the distinction between type- and non-type species. More than 3,500 genomes representing type strains of species from >850 genera of either bacterial or archaeal lineages were tested. Over 140 genera were analyzed in detail within the taxonomic context of order/family. Significant genomic differences between members of a genus and type species of other genera in the same order/family were conserved in 94% of the cases. Nearly 90% (92% if polyphyletic genera are excluded) of the type strains were classified in agreement with current taxonomy. The 448 type strains that need reclassification directly impact 33% of the genera analyzed in detail. The results provide a first line of evidence that the combination of genomic indices provides added resolution to effectively demarcate genera within the taxonomic framework that is currently based on the 16S rRNA gene. We also identify the emergence of natural breakpoints at the genome level that can further help in the circumscription of taxa, increasing the proportion of directly impacted genera to at least 43% and pointing at inaccuracies on the use of the 16S rRNA gene as a taxonomic marker, despite its precision. Altogether, these results suggest that genomic coherence is an emergent property of genera in Bacteria and Archaea . IMPORTANCE In recent decades, the taxonomy of Bacteria and Archaea , and therefore genus designation, has been largely based on the use of a single ribosomal gene, the 16S rRNA gene, as a taxonomic marker. We propose an approach to delineate genera that excludes the direct use of the 16S rRNA gene and focuses on a standard genome relatedness index, the average nucleotide identity. Our findings are of importance to the microbiology community because the emergent properties of Bacteria and Archaea that are identified in this study will help assign genera with higher taxonomic resolution. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10140621
- Date Published:
- Journal Name:
- mBio
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2150-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Alanio, Alexandre (Ed.)ABSTRACT Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genusAspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific forAspergillusand provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genusAspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly availableAspergillusgenomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.more » « less
- 
            null (Ed.)Abstract Background Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. Results We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9–20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces . Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. Conclusions Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces .more » « less
- 
            Three novel carbon monoxide-oxidizing Halobacteria were isolated from Bonneville Salt Flats (Utah, USA) salt crusts and nearby saline soils. Phylogenetic analysis of 16S rRNA gene sequences revealed that strains PCN9 T , WSA2 T and WSH3 T belong to the genera Halobacterium , Halobaculum and Halovenus , respectively. Strains PCN9 T , WSA2 T and WSH3 T grew optimally at 40 °C (PCN9 T ) or 50 °C (WSA2 T , WSH3 T ). NaCl optima were 3 M (PCN9 T , WSA2 T ) or 4 M NaCl (WSH3 T ). Carbon monoxide was oxidized by all isolates, each of which contained a molybdenum-dependent CO dehydrogenase. G+C contents for the three respective isolates were 66.75, 67.62, and 63.97 mol% as derived from genome analyses. The closest phylogenetic relatives for PCN9 T , WSA2 T and WSH3 T were Halobacterium noricense A1 T , Halobaculum roseum D90 T and Halovenus aranensis EB27 T with 98.71, 98.19 and 95.95 % 16S rRNA gene sequence similarities, respectively. Genome comparisons of PCN9 T with Halobacterium noricense A1 T yielded an average nucleotide identity (ANI) of 82.0% and a digital DNA–DNA hybridization (dDDH) value of 25.7 %; comparisons of WSA2 T with Halobaculum roseum D90 T yielded ANI and dDDH values of 86.34 and 31.1 %, respectively. The ANI value for a comparison of WSH3 T with Halovenus aranensis EB27 T was 75.2 %. Physiological, biochemical, genetic and genomic characteristics of PCN9 T , WSA2 T and WSH3 T differentiated them from their closest phylogenetic neighbours and indicated that they represent novel species for which the names Halobaculum bonnevillei , Halobaculum saliterrae and Halovenus carboxidivorans are proposed, respectively. The type strains are PCN9 T (=JCM 32472=LMG 31022=ATCC TSD-126), WSA2 T (=JCM 32473=ATCC TSD-127) and WSH3 T (=JCM 32474=ATCC TSD-128).more » « less
- 
            Abstract As Arctic soil ecosystems warm due to climate change, enhanced microbial activity is projected to increase the rate of soil organic matter degradation. Delineating the diversity and activity of Arctic tundra microbial communities active in decomposition is thus of keen interest. Here, we describe novel cold-adapted bacteria in the genus Mucilaginibacter (Bacteroidota) isolated from Artic tundra soils in Finland. These isolates are aerobic chemoorganotrophs and appear well adapted to the low-temperature environment, where they are also exposed to desiccation and a wide regime of annual temperature variation. Initial 16S ribosomal RNA (rRNA)-based phylogenetic analysis suggested that five isolated strains represent new species of the genus Mucilaginibacter, confirmed by whole genome-based phylogenomic and average nucleotide identity. Five novel species are described: Mucilaginibacter geliditolerans sp. nov., Mucilaginibacter tundrae sp. nov., Mucilaginibacter empetricola sp. nov., Mucilaginibacter saanensis sp. nov., and Mucilaginibacter cryoferens sp. nov. Genome and phenotype analysis showed their potential in complex carbon degradation, nitrogen assimilation, polyphenol degradation, and adaptation to their tundra heath habitat. A pangenome analysis of the newly identified species alongside known members of the Mucilaginibacter genus sourced from various environments revealed the distinctive characteristics of the tundra strains. These strains possess unique genes related to energy production, nitrogen uptake, adaptation, and the synthesis of secondary metabolites that aid in their growth, potentially accounting for their prevalence in tundra soil. By uncovering novel species and strains within the Mucilaginibacter, we enhance our understanding of this genus and elucidate how environmental fluctuations shape the microbial functionality and interactions in Arctic tundra ecosystems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    