skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smoothing and Interpolating Noisy GPS Data with Smoothing Splines
A comprehensive method is provided for smoothing noisy, irregularly sampled data with non-Gaussian noise using smoothing splines. We demonstrate how the spline order and tension parameter can be chosen a priori from physical reasoning. We also show how to allow for non-Gaussian noise and outliers that are typical in global positioning system (GPS) signals. We demonstrate the effectiveness of our methods on GPS trajectory data obtained from oceanographic floating instruments known as drifters.  more » « less
Award ID(s):
1658564
PAR ID:
10142476
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
37
Issue:
3
ISSN:
0739-0572
Page Range / eLocation ID:
449 to 465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Randomized classifiers have been shown to provide a promising approach for achieving certified robustness against adversarial attacks in deep learning. However, most existing methods only leverage Gaussian smoothing noise and only work for L2 perturbation. We propose a general framework of adversarial certification with non-Gaussian noise and for more general types of attacks, from a unified functional optimization perspective. Our new framework allows us to identify a key trade-off between accuracy and robustness via designing smoothing distributions, helping to design new families of non-Gaussian smoothing distributions that work more efficiently for different Lp settings, including L1, L2 and L-infinite attacks. Our proposed methods achieve better certification results than previous works and provide a new perspective on randomized smoothing certification. 
    more » « less
  2. The action of a noise operator on a code transforms it into a distribution on the respective space. Some common examples from information theory include Bernoulli noise acting on a code in the Hamming space and Gaussian noise acting on a lattice in the Euclidean space. We aim to characterize the cases when the output distribution is close to the uniform distribution on the space, as measured by the Rényi divergence of order α∈(1,∞]. A version of this question is known as the channel resolvability problem in information theory, and it has implications for security guarantees in wiretap channels, error correction, discrepancy, worst-to-average case complexity reductions, and many other problems. Our work quantifies the requirements for asymptotic uniformity (perfect smoothing) and identifies explicit code families that achieve it under the action of the Bernoulli and ball noise operators on the code. We derive expressions for the minimum rate of codes required to attain asymptotically perfect smoothing. In proving our results, we leverage recent results from harmonic analysis of functions on the Hamming space. Another result pertains to the use of code families in Wyner’s transmission scheme on the binary wiretap channel. We identify explicit families that guarantee strong secrecy when applied in this scheme, showing that nested Reed–Muller codes can transmit messages reliably and securely over a binary symmetric wiretap channel with a positive rate. Finally, we establish a connection between smoothing and error correction in the binary symmetric channel. 
    more » « less
  3. null (Ed.)
    Randomized smoothing, using just a simple isotropic Gaussian distribution, has been shown to produce good robustness guarantees against ℓ2-norm bounded adversaries. In this work, we show that extending the smoothing technique to defend against other attack models can be challenging, especially in the high-dimensional regime. In particular, for a vast class of i.i.d.~smoothing distributions, we prove that the largest ℓp-radius that can be certified decreases as O(1/d12−1p) with dimension d for p>2. Notably, for p≥2, this dependence on d is no better than that of the ℓp-radius that can be certified using isotropic Gaussian smoothing, essentially putting a matching lower bound on the robustness radius. When restricted to {\it generalized} Gaussian smoothing, these two bounds can be shown to be within a constant factor of each other in an asymptotic sense, establishing that Gaussian smoothing provides the best possible results, up to a constant factor, when p≥2. We present experimental results on CIFAR to validate our theory. For other smoothing distributions, such as, a uniform distribution within an ℓ1 or an ℓ∞-norm ball, we show upper bounds of the form O(1/d) and O(1/d1−1p) respectively, which have an even worse dependence on d. 
    more » « less
  4. Randomized smoothing, using just a simple isotropic Gaussian distribution, has been shown to produce good robustness guarantees against ℓ2-norm bounded adversaries. In this work, we show that extending the smoothing technique to defend against other attack models can be challenging, especially in the high-dimensional regime. In particular, for a vast class of i.i.d. smoothing distributions, we prove that the largest ℓp-radius that can be certified decreases as O(1/d12−1p) with dimension d for p>2. Notably, for p≥2, this dependence on d is no better than that of the ℓp-radius that can be certified using isotropic Gaussian smoothing, essentially putting a matching lower bound on the robustness radius. When restricted to generalized Gaussian smoothing, these two bounds can be shown to be within a constant factor of each other in an asymptotic sense, establishing that Gaussian smoothing provides the best possible results, up to a constant factor, when p≥2. We present experimental results on CIFAR to validate our theory. For other smoothing distributions, such as, a uniform distribution within an ℓ1 or an ℓ∞-norm ball, we show upper bounds of the form O(1/d) and O(1/d1−1p) respectively, which have an even worse dependence on d. 
    more » « less
  5. We present PANCAKE, the first system to protect key-value stores from access pattern leakage attacks with small constant factor bandwidth overhead. PANCAKE uses a new approach, that we call frequency smoothing, to transform plaintext ac- cesses into uniformly distributed encrypted accesses to an encrypted data store. We show that frequency smoothing prevents access pattern leakage attacks by passive persis- tent adversaries in a new formal security model. We inte- grate PANCAKE into three key-value stores used in produc- tion clusters, and demonstrate its practicality: on standard benchmarks, PANCAKE achieves 229× better throughput than non-recursive Path ORAM — within 3–6× of insecure base- lines for these key-value stores. 
    more » « less