Aliphatic allylic amines are found in a great variety of complex and biorelevant molecules. The direct allylic C–H amination of alkenes serves as the most straightforward method toward these motifs. However, use of widely available internal alkenes with aliphatic amines in this transformation remains a synthetic challenge. In particular, palladium catalysis faces the twin challenges of inefficient coordination of Pd(II) to internal alkenes but excessively tight and therefore inhibitory coordination of Pd(II) by basic aliphatic amines. We report a general solution to these problems. The developed protocol, in contrast to a classical Pd(II/0) scenario, operates through a blue light–induced Pd(0/I/II) manifold with mild aryl bromide oxidant. This open-shell approach also enables enantio- and diastereoselective allylic C–H amination.
more »
« less
Ruthenium(0)-sequential catalysis for the synthesis of sterically hindered amines by C–H arylation/hydrosilylation
We report sequential ruthenium(0)-catalysis for the synthesis of sterically-hindered amines via direct C–H arylation of simple imines and imine hydrosilylation. The method involves direct C–H arylation under neutral conditions with organoboranes enabled by ruthenium(0) catalysis. The catalytic hydrosilylation was performed in a one-pot fashion using Et 3 SiH. The reaction is compatible with a broad range of electronically- and sterically-varied imines, enabling rapid production of valuable biaryl amines in good to excellent yields. The method constitutes a two-step, one-pot procedure to synthesize sterically-hindered amines from aldehydes. The utility of this atom-economic strategy is demonstrated in one-pot, three-component coupling, direct in situ aldehyde arylation and the use of transfer hydrogenation.
more »
« less
- Award ID(s):
- 1650766
- PAR ID:
- 10146147
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 55
- Issue:
- 61
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 9003 to 9006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Silyloxyarenes were utilized as electrophilic coupling partners with amines in the synthesis of aniline derivatives. A diverse range of amine substrates were used, including cyclic or acyclic secondary amines, secondary anilines, and sterically hindered primary anilines. Additionally, a range of sterically hindered and unhindered primary aliphatic amines were employed, which have previously been challenging with other classes of aryl ether electrophiles. Orthogonal couplings of silyloxyarenes with aryl methyl ethers are illustrated, where selectivity between the two C−O electrophiles is determined by ligand control, thereby allowing complementary and selective late‐stage diversification of either electrophile. Finally, a sequential coupling displays the utility of this amination method along with the reversal in intrinsic reactivity between aryl methyl ethers and silyloxyarenes.more » « less
-
A highly selective palladium-catalyzed carbonylative arylation of weakly acidic benzylic C(sp 3 )–H bonds of azaarylmethylamines with aryl bromides under 1 atm of CO gas has been achieved. This work represents the first examples of use of such weakly acidic pronucleophiles in this class of transformations. In the presence of a NIXANTPHOS-based palladium catalyst, this one-pot cascade process allows a range of azaarylmethylamines containing pyridyl, quinolinyl and pyrimidyl moieties and acyclic and cyclic amines to undergo efficient reactions with aryl bromides and CO to provide α-amino aryl-azaarylmethyl ketones in moderate to high yields with a broad substrate scope and good tolerance of functional groups. This reaction proceeds via in situ reversible deprotonation of the benzylic C–H bonds to give the active carbanions, thereby avoiding prefunctionalized organometallic reagents and generation of additional waste. Importantly, the operational simplicity, scalability and diversity of the products highlight the potential applicability of this protocol.more » « less
-
Abstract A protocol for the iterative decarboxylative cross‐coupling of carboxylic acids with dehydroalanine (Dha) allyl esters is described. A procedure for decarboxylative Giese addition to dehydroalanine allyl esters that avoids 5‐exo‐trig radical cyclization onto the allyl moiety was developed. This results in complex, substituted alanine allyl esters that are poised for a second decarboxylative coupling. Thus, following the photocatalytic decarboxylative alkylation of Dha, the resulting amino acid allyl esters were subjected to decarboxylative allylation under metallaphotoredox/palladium catalysis. The Giese addition and decarboxylative allylation can be performed in one pot simply by triggering the decarboxylative allylation by addition of a palladium catalyst. These one‐pot decarboxylative couplings leverage temporally controlled carboxylate formation to allow controlled, sequential photoredox activation of the carboxylates. The ability to perform sequential, one‐pot photoredox C─C bond formations obviates the need for isolation of intermediates. The final products of these coupling reactions are densely functionalized homoallylic amines and/or unsymmetric, differentiated 1,3‐diamines, both known for their high synthetic value.more » « less
-
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp 3 )–H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C–H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.more » « less
An official website of the United States government

